
1. Let K > 0 such that |gk(z)| ≤ K for all z ∈ D and k = 1, ..., n. Since D is simply
connected, the lemma of the analytic logarithm shows that there exists an analytic branch
of log(gk) on D for every k = 1, ..., n. Hence hk = exp(η log(gk)) is an analytic branch of
gηk for η > 0 and |hk| = |gk|η on D. De�ne F : D → C by F (z) = f(z)

∏n
k=1 hk(z)K

−ηn.
Then F is analytic on D and

|F (z) = |f(z)|
n∏
k=1

|gk(z)|ηK−ηn ≤ |f(z)| ∀z ∈ D.

But then, by the assumptions a) and b), F satis�es the hypothesis of Theorem 1.6 with
max{M,MK−η} in the place of M :

lim sup
z→a

|F (z)| ≤ lim sup
z→a

|f(z)| ≤M a ∈ A;

and

lim sup
z→b

|F (z)| = lim sup
z→b

|f(z)|
n∏
k=1

|gk(z)|ηK−ηn

≤ lim sup
z→b

|f(z)|
n∏
k=1

|gk(z)|ηK−η ≤MK−η b ∈ Bk.

Hence

|f(z)| = |F (z)|∏n
k=1 |gk(z)|ηK−ηn

≤ max{M,MK−η}∏n
k=1 |gk(z)|ηK−ηn

∀z ∈ D

By �xing z ∈ D arbitrarily and letting η → 0+, we deduce |f(z)| ≤ ∀z ∈ D.

2. Solution 1. Let T = {z : | arg(z)| < π
2
} and g(z) = f(log(z)). Then g is analytic

in T , log(T ) = G and log(∂T ) = ∂G. Thus

lim sup
z→ω∈∂T

|g(z)| = lim sup
z→w∈∂G

|f(z)| ≤M ∀ω ∈ ∂T.

Also there exists A > 0 and a ∈ (0, 1) such that

|g(z)| = |f(log(z))| < exp(A exp[a|Re(log(z))|]) = expA|z|a < expA|z| ∀|z| ≥ 1.

Corollary 8.3 implies f(z) ≤M ∀z ∈ G.

Solution 2. The result can also be deduced by using the Phragmen-Lindelöf theorem:
Let b ∈ (a, 1) and B = 1

cos(bπ2 )
, and consider the function g(z) = exp

(
−B

(
ebz + e−bz

))
.

Since < (ez + e−z) =
(
e<z + e−<z

)
cos=z and ex + e−x ≥ e|x| for all x ∈ R, we have

|g(z)| = exp
(
−B

(
eb<z + e−b<z

)
cos(b=z)

)
≤ exp

(
−Beb|<z| cos

(
b
π

2

))
= exp (− exp(b|<z|))
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for all z ∈ G. Hence g is bounded in G, and

|f(z)||g(z)|η ≤ exp [A exp(a|<z|)− η exp(b|<z|)]→ 0,

as z →∞, z ∈ G, for all η > 0. The assertion follows by Phragmen-Lindelöf theorem.

Let f(z) = exp(exp z). Then |f(z)| = exp
(
e<z cos=z

)
= 1 for all z ∈ ∂G and |f(z)| ≤

exp(exp(<z)) ≤ exp(exp(|<z|)) for all z ∈ G, but limz→∞,z∈R+ |f(z)| = limx→∞ exp(ex) =
∞, so the result of the exercise does't hold. Hence the growth condition given is the best
possible, and we can not make a = 1.

3. Let

F (z) = f(z)
1 + z

1− z
.

Then lim supz→w∈∂G |F (z)| ≤ M , because lim supz→w∈∂G |f(z)| ≤ M . On the other hand
|f(z)| ≤ P exp(|z|1−δ) for any δ ∈ (0, 1). Thus we obtain

|F (z)| ≤
∣∣∣1 + z

1− z

∣∣∣P exp(|z|1−δ)

≤ 1 + |z|
|1− |z||

P exp(|z|1−δ)

≤ 3P exp(|z|1−δ),

if z ∈ G and |z| > 2. Hence |F (z)| ≤M in G by Corollary 8.2 and the assertion follows.

4. Solution 1. Let

g(z) =

{
f(z)−f(0)

z
, z 6= 0;

f ′(0), z = 0.

Moreover, we know that f(z) ≤ C|z|m, where C,R ∈ (0,∞) are constants and |z| > R.
Hence if |z| is su�ciently large, we obtain the inequality

|g(z)| ≤ A+B|z|m−1 < D|z|m−1,

where A,B,D ∈ (0,∞) are constants. Now, by the induction principle, we can easily pro-
ve that g is a polynomial with deg(g) ≤ m− 1. Thus f is a polynomial with deg(f) ≤ m.

Solution 2. Since f is entire, its Maclaurin series f(z) =
∑∞

k=0 akz
k, ak =

f (k)(0)
k!

, converges
for all z ∈ C. Now, Cauchy's integral formula gives

|ak| =
∣∣∣∣ 12π

∫
∂D(0,r)

f(ξk+1)

ξ
dξ

∣∣∣∣ ≤ 1

2π

∫
∂D(0,r)

|f(ξ)|
|ξ|k+1

|dξ|

≤ 1

2π

∫
∂D(0,r)

C|ξ|m

|ξ|k+1
|dξ| = C

2π

∫
∂D(0,r)

rm−(k+1)|dξ| = Crm−k

for all k ∈ N and r > R > 0. Hence, if k > m, we have |ak| ≤ limr→∞Cr
m−k = 0, and

thus f is a polynomial of degree at most m.
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Solution 3. Since |f(z)| ≤ C|z|m for all |z| > R, we have |f(z)z−m| ≤ C for all |z| > R.
By substituting z = w−1 we get |f( 1

w
)wm| ≤ C for all w < 1

R
. Hence f( 1

w
) is analytic at

w = 0 or has a pole of order n, n ≤ m, at w = 0. It follows that f is a polynomial with
deg(f) ≤ m.

5. Since f(D(a, r)) ⊂ D(f(a), R), |f(a + z) − f(a)| ≤ R for all z ∈ D(0, r). Consi-
der the function g : D→ C,

g(z) =
f(a+ rz)− f(a)

R
.

We see that g(0) = 0 and |g(z)| ≤ R
R

= 1 for all z ∈ D. Thus Schwarz lemma yields
|g(z)| ≤ |z| for all z ∈ D. Hence

|f(a+ z)− f(a)| ≤ R

r
|z|

for all z ∈ D(0, r).

To prove Liouville's theorem (every bounded entire function is constant), suppose that f :
C→ C is entire and bounded. Then there exists R ∈ (0,∞) such that f(z) ∈ D(f(0), R)
for all z ∈ C. Hence

|f(z)− f(0)| ≤ R

r
|z|, z ∈ D(0, r)

for all r ∈ (0,∞). By letting r →∞, we obtain f(z) = f(0) for all z ∈ C.

6. ηα(D) is a �lens� inside D with its vertices at ηα(1) = 1 and ηα(−1) = −1, and
with an angle of απ at them.

Clearly 1+z
1−z is a conformal map of D onto D1 = {z ∈ C : <z > 0}, zα is a confor-

mal map of D1 onto D2 = {z ∈ C\{0} : | arg z| < απ
2
} ⊂ D1 (z

α = eα log z has an analytic
branch by the lemma of analytic logarithm), and z−1

z+1
is a conformal map of D1 onto D.

Thus ηα is a conformal map of D onto ηα(D) ⊂ D.

Version of Corollary 8.4. Suppose that f(z)→ c ∈ C as z → ω ∈ T, z ∈ D, along two
circular arcs centered at w ∈ C and −w ∈ C (and intersecting at ω). Let D ⊂ D be the
domain bounded by these arcs. If f is analytic and bounded in D or C\D, then f(z)→ c
uniformly as z → ω in D or C \D respectively.

Proof. Let α ∈ (0, 1) such that απ is the angle at ω formed by the circular arcs bounding
D. Then the function g(z) = 1+ωz

1−ωz maps D onto the sector S+ = {z ∈ C \ {0} : | arg z| <
απ

2
} and C \D onto S− = C \ S+. Hence h = f ◦ g is bounded and analytic in S+ or S−

and h(z)→ c as z →∞ along the rays {z ∈ C : arg z = απ
2
} and {z ∈ C : arg z = −απ

2
}.

Thus Corollary 8.4 implies h(z) → c uniformly as z → ∞ in S+ or S− respectively, and
hence f(z)→ c uniformly as z →∞ in D or C \D.
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