1. Let K > 0 such that $|g_k(z)| \leq K$ for all $z \in D$ and k = 1, ..., n. Since D is simply connected, the lemma of the analytic logarithm shows that there exists an analytic branch of $\log(g_k)$ on D for every k = 1, ..., n. Hence $h_k = \exp(\eta \log(g_k))$ is an analytic branch of g_k^{η} for $\eta > 0$ and $|h_k| = |g_k|^{\eta}$ on D. Define $F: D \to \mathbb{C}$ by $F(z) = f(z) \prod_{k=1}^n h_k(z) K^{-\eta n}$. Then F is analytic on D and

$$|F(z)| = |f(z)| \prod_{k=1}^{n} |g_k(z)|^{\eta} K^{-\eta n} \le |f(z)| \ \forall z \in D.$$

But then, by the assumptions a) and b), F satisfies the hypothesis of Theorem 1.6 with $\max\{M, MK^{-\eta}\}$ in the place of M:

$$\limsup_{z \to a} |F(z)| \le \limsup_{z \to a} |f(z)| \le M \ a \in A;$$

and

$$\limsup_{z \to b} |F(z)| = \limsup_{z \to b} |f(z)| \prod_{k=1}^n |g_k(z)|^\eta K^{-\eta n}$$
$$\leq \limsup_{z \to b} |f(z)| \prod_{k=1}^n |g_k(z)|^\eta K^{-\eta} \leq M K^{-\eta} \ b \in B_k$$

Hence

$$|f(z)| = \frac{|F(z)|}{\prod_{k=1}^{n} |g_k(z)|^{\eta} K^{-\eta n}} \le \frac{\max\{M, MK^{-\eta}\}}{\prod_{k=1}^{n} |g_k(z)|^{\eta} K^{-\eta n}} \ \forall z \in D$$

By fixing $z \in D$ arbitrarily and letting $\eta \to 0^+$, we deduce $|f(z)| \leq \forall z \in D$.

2. Solution 1. Let $T = \{z : |\arg(z)| < \frac{\pi}{2}\}$ and $g(z) = f(\log(z))$. Then g is analytic in T, $\log(T) = G$ and $\log(\partial T) = \partial G$. Thus

$$\limsup_{z \to \omega \in \partial T} |g(z)| = \limsup_{z \to w \in \partial G} |f(z)| \le M \ \forall \omega \in \partial T.$$

Also there exists A > 0 and $a \in (0, 1)$ such that

$$|g(z)| = |f(\log(z))| < \exp(A \exp[a|Re(\log(z))|]) = \exp(A|z|^a) < \exp(A|z| \forall |z| \ge 1)$$

Corollary 8.3 implies $f(z) \leq M \ \forall z \in G$.

Solution 2. The result can also be deduced by using the Phragmen-Lindelöf theorem: Let $b \in (a, 1)$ and $B = \frac{1}{\cos(b\frac{\pi}{2})}$, and consider the function $g(z) = \exp\left(-B\left(e^{bz} + e^{-bz}\right)\right)$. Since $\Re\left(e^{z} + e^{-z}\right) = \left(e^{\Re z} + e^{-\Re z}\right)\cos\Im z$ and $e^{x} + e^{-x} \ge e^{|x|}$ for all $x \in \mathbb{R}$, we have

$$|g(z)| = \exp\left(-B\left(e^{b\Re z} + e^{-b\Re z}\right)\cos(b\Im z)\right)$$
$$\leq \exp\left(-Be^{b|\Re z|}\cos\left(b\frac{\pi}{2}\right)\right)$$
$$= \exp\left(-\exp(b|\Re z|)\right)$$

for all $z \in G$. Hence g is bounded in G, and

$$|f(z)||g(z)|^{\eta} \le \exp\left[A\exp(a|\Re z|) - \eta\exp(b|\Re z|)\right] \to 0,$$

as $z \to \infty$, $z \in G$, for all $\eta > 0$. The assertion follows by Phragmen-Lindelöf theorem.

Let $f(z) = \exp(\exp z)$. Then $|f(z)| = \exp(e^{\Re z}\cos\Im z) = 1$ for all $z \in \partial G$ and $|f(z)| \leq \exp(\exp(\Re z)) \leq \exp(\exp(|\Re z|))$ for all $z \in G$, but $\lim_{z\to\infty,z\in\mathbb{R}_+} |f(z)| = \lim_{x\to\infty} \exp(e^x) = \infty$, so the result of the exercise does't hold. Hence the growth condition given is the best possible, and we can not make a = 1.

3. Let

$$F(z) = f(z)\frac{1+z}{1-z}.$$

Then $\limsup_{z\to w\in\partial G} |F(z)| \leq M$, because $\limsup_{z\to w\in\partial G} |f(z)| \leq M$. On the other hand $|f(z)| \leq P \exp(|z|^{1-\delta})$ for any $\delta \in (0, 1)$. Thus we obtain

$$|F(z)| \le \left| \frac{1+z}{1-z} \right| P \exp(|z|^{1-\delta}) \\\le \frac{1+|z|}{|1-|z||} P \exp(|z|^{1-\delta}) \\\le 3P \exp(|z|^{1-\delta}),$$

if $z \in G$ and |z| > 2. Hence $|F(z)| \le M$ in G by Corollary 8.2 and the assertion follows.

4. Solution 1. Let

$$g(z) = \begin{cases} \frac{f(z) - f(0)}{z}, & z \neq 0; \\ f'(0), & z = 0. \end{cases}$$

Moreover, we know that $f(z) \leq C|z|^m$, where $C, R \in (0, \infty)$ are constants and |z| > R. Hence if |z| is sufficiently large, we obtain the inequality

$$|g(z)| \le A + B|z|^{m-1} < D|z|^{m-1},$$

where $A, B, D \in (0, \infty)$ are constants. Now, by the induction principle, we can easily prove that g is a polynomial with $\deg(g) \leq m - 1$. Thus f is a polynomial with $\deg(f) \leq m$.

Solution 2. Since f is entire, its Maclaurin series $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_k = \frac{f^{(k)}(0)}{k!}$, converges for all $z \in \mathbb{C}$. Now, Cauchy's integral formula gives

$$\begin{aligned} |a_k| &= \left| \frac{1}{2\pi} \int_{\partial D(0,r)} \frac{f(\xi^{k+1})}{\xi} d\xi \right| \le \frac{1}{2\pi} \int_{\partial D(0,r)} \frac{|f(\xi)|}{|\xi|^{k+1}} |d\xi| \\ &\le \frac{1}{2\pi} \int_{\partial D(0,r)} \frac{C|\xi|^m}{|\xi|^{k+1}} |d\xi| = \frac{C}{2\pi} \int_{\partial D(0,r)} r^{m-(k+1)} |d\xi| = Cr^{m-k} \end{aligned}$$

for all $k \in \mathbb{N}$ and r > R > 0. Hence, if k > m, we have $|a_k| \leq \lim_{r \to \infty} Cr^{m-k} = 0$, and thus f is a polynomial of degree at most m.

Solution 3. Since $|f(z)| \leq C|z|^m$ for all |z| > R, we have $|f(z)z^{-m}| \leq C$ for all |z| > R. By substituting $z = w^{-1}$ we get $|f(\frac{1}{w})w^m| \leq C$ for all $w < \frac{1}{R}$. Hence $f(\frac{1}{w})$ is analytic at w = 0 or has a pole of order $n, n \leq m$, at w = 0. It follows that f is a polynomial with $\deg(f) \leq m$.

5. Since $f(D(a,r)) \subset D(f(a),R)$, $|f(a+z) - f(a)| \leq R$ for all $z \in D(0,r)$. Consider the function $g: \mathbb{D} \to \mathbb{C}$,

$$g(z) = \frac{f(a+rz) - f(a)}{R}.$$

We see that g(0) = 0 and $|g(z)| \leq \frac{R}{R} = 1$ for all $z \in \mathbb{D}$. Thus Schwarz lemma yields $|g(z)| \leq |z|$ for all $z \in \mathbb{D}$. Hence

$$|f(a+z) - f(a)| \le \frac{R}{r}|z|$$

for all $z \in D(0, r)$.

To prove Liouville's theorem (every bounded entire function is constant), suppose that $f : \mathbb{C} \to \mathbb{C}$ is entire and bounded. Then there exists $R \in (0, \infty)$ such that $f(z) \in D(f(0), R)$ for all $z \in \mathbb{C}$. Hence

$$|f(z) - f(0)| \le \frac{R}{r}|z|, \ z \in D(0, r)$$

for all $r \in (0, \infty)$. By letting $r \to \infty$, we obtain f(z) = f(0) for all $z \in \mathbb{C}$.

6. $\eta_{\alpha}(\mathbb{D})$ is a "lens" inside \mathbb{D} with its vertices at $\eta_{\alpha}(1) = 1$ and $\eta_{\alpha}(-1) = -1$, and with an angle of $\alpha \pi$ at them.

Clearly $\frac{1+z}{1-z}$ is a conformal map of \mathbb{D} onto $D_1 = \{z \in \mathbb{C} : \Re z > 0\}$, z^{α} is a conformal map of D_1 onto $D_2 = \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \alpha \frac{\pi}{2}\} \subset D_1$ ($z^{\alpha} = e^{\alpha \log z}$ has an analytic branch by the lemma of analytic logarithm), and $\frac{z-1}{z+1}$ is a conformal map of D_1 onto \mathbb{D} . Thus η_{α} is a conformal map of \mathbb{D} onto $\eta_{\alpha}(\mathbb{D}) \subset \mathbb{D}$.

Version of Corollary 8.4. Suppose that $f(z) \to c \in \mathbb{C}$ as $z \to \omega \in \mathbb{T}$, $z \in \mathbb{D}$, along two circular arcs centered at $w \in \mathbb{C}$ and $-w \in \mathbb{C}$ (and intersecting at ω). Let $D \subset \mathbb{D}$ be the domain bounded by these arcs. If f is analytic and bounded in D or $\mathbb{C} \setminus \overline{D}$, then $f(z) \to c$ uniformly as $z \to \omega$ in D or $\mathbb{C} \setminus \overline{D}$ respectively.

Proof. Let $\alpha \in (0, 1)$ such that $\alpha \pi$ is the angle at ω formed by the circular arcs bounding D. Then the function $g(z) = \frac{1+\overline{\omega}z}{1-\overline{\omega}z}$ maps D onto the sector $S_+ = \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \alpha \frac{\pi}{2}\}$ and $\mathbb{C} \setminus \overline{D}$ onto $S_- = \mathbb{C} \setminus \overline{S_+}$. Hence $h = f \circ g$ is bounded and analytic in S_+ or S_- and $h(z) \to c$ as $z \to \infty$ along the rays $\{z \in \mathbb{C} : \arg z = \alpha \frac{\pi}{2}\}$ and $\{z \in \mathbb{C} : \arg z = -\alpha \frac{\pi}{2}\}$. Thus Corollary 8.4 implies $h(z) \to c$ uniformly as $z \to \infty$ in S_+ or S_- respectively, and hence $f(z) \to c$ uniformly as $z \to \infty$ in D or $\mathbb{C} \setminus \overline{D}$.