1. Let K > 0 such that |gx(z)| < K for all z € D and k = 1,...,n. Since D is simply
connected, the lemma of the analytic logarithm shows that there exists an analytic branch
of log(gx) on D for every k = 1,...,n. Hence hy, = exp(nlog(gx)) is an analytic branch of
gy for n > 0 and |hy| = |gx|" on D. Define F : D — C by F(z) = f(2) [ [, h(2) K™
Then F'is analytic on D and

| ( !H!gk WK™ < |£(2)] ¥z € D.

But then, by the assumptions a) and b), F' satisfies the hypothesis of Theorem 1.6 with
max{M, M K~"} in the place of M:

limsup |F(z)| < limsup|f(z)| < M a € A;

z—a z—=a
and
lim sup |F(z)| —hmsup\f \H‘gk [T
z—b k=1
<hmsup|f |H|9k: NW'K™" < MK™" b€ By.
Hence I3 M. MK
f(2)] = F(2)] < Inax{M, L v.ep

[Tzt lgn ()P K= = Ty g (2) 7K
By fixing z € D arbitrarily and letting n — 0%, we deduce |f(z)| < Vz € D.

2. Solution 1. Let T = {z : |arg(z)| < 5} and g(z) = f(log(z)). Then g is analytic
in T, log(T) = G and log(9T') = dG. Thus

limsup |g(z)| = limsup |f(2)] < M Yw € IT.

z—wedT z—weIG

Also there exists A > 0 and a € (0, 1) such that
|9(2)] = |f(log(2))] < exp(A expla| Re(log(2))]]) = exp A[z]* < exp Alz| V|z| = 1.

Corollary 8.3 implies f(z) < M Vz € G.

Solution 2. The result can also be deduced by using the Phragmen-Lindelf theorem:
Let b € (a,1) and B = Cos(lbﬂ), and consider the function g(z) = exp (—B (e** + e7%)).

Since R (e + %) = (e + e %) cos Sz and e” + e* > €ll for all z € R, we have
19(2)| = exp (=B (e + e7"™) cos(bS3z2))

< exp (—Bebmz‘ cos (bg>)
= exp (—exp(b|Rz|))



for all z € G. Hence ¢ is bounded in G, and
£ (2)[lg(2)]" < exp [Aexp(a|Rz]) — nexp(b|Rz])] — 0,

as z — o0, z € G, for all n > 0. The assertion follows by Phragmen-Lindel6f theorem.

Let f(z) = exp(expz). Then |f(z)] = exp (¢™* cosSz) = 1 for all z € G and |f(2)| <
exp(exp(Rz)) < exp(exp(|RNz])) for all z € G, but lim,_,o .er, |f(2)] = limy_,o0 exp(e®) =
00, so the result of the exercise does’t hold. Hence the growth condition given is the best
possible, and we can not make a = 1.

3. Let

F(z) = fz)n 2

1—=z2

Then limsup,_,,coc |F(2)] < M, because limsup,_,,coc | f(2)] < M. On the other hand
|f(2)] < Pexp(|z]'7?) for any § € (0,1). Thus we obtain

1+2 _
F(2)] < || Pexp(lz~)
1+ 2| 1-6
< i Pexp(lz) )
1= ]

< 3Pexp(|2]'™),

if z € G and |z| > 2. Hence |F(2)| < M in G by Corollary 8.2 and the assertion follows.

4. Solution 1. Let

g(z _ f(z);f(O)) 27&0;
(0, =0,

Moreover, we know that f(z) < C|z|™, where C, R € (0,00) are constants and |z| > R.
Hence if |z| is sufficiently large, we obtain the inequality

l9(=)| < A+ Blz|"" < D2™,

where A, B, D € (0, 00) are constants. Now, by the induction principle, we can easily pro-
ve that ¢ is a polynomial with deg(g) < m — 1. Thus f is a polynomial with deg(f) < m.

F®)(0)

Solution 2. Since f is entire, its Maclaurin series f(z) = Y oo apz®, ar = &7,

for all z € C. Now, Cauchy’s integral formula gives

1 J(EF) ’ 1 £
— I el < = d
2m /BD(O,T) § = 2m /8D(0,r) ’5|k+1| d

1 clegm C
<L Sl = 5 [l = o
27 Jopor €] 21 Jap(o.r)

for all Kk € N and » > R > 0. Hence, if k¥ > m, we have |a;| < lim,_,o, C7™ % = 0, and
thus f is a polynomial of degree at most m.

converges

lax| =

2



Solution 3. Since |f(z)] < C|z|™ for all |z| > R, we have |f(z)z~™| < C for all |z] > R.
By substituting z = w™! we get |f(+)w™| < C for all w < &. Hence f(+) is analytic at
w = 0 or has a pole of order n, n < m, at w = 0. It follows that f is a polynomial with
deg(f) < m.

5. Since f(D(a,7)) € D(f(a),R), |f(a + 2) — f(a)| < R for all z € D(0,r). Consi-
der the function g : D — C,

ooy = 07— f1e)

We see that g(0) = 0 and [g(z)| < £ =1 for all z € D. Thus Schwarz lemma yields
lg(2)| < |z| for all z € D. Hence

flat2) — f(@)] <
for all z € D(0,7r).

To prove Liouville’s theorem (every bounded entire function is constant), suppose that f :
C — C is entire and bounded. Then there exists R € (0, 00) such that f(z) € D(f(0), R)
for all z € C. Hence

7(2) ~ FO) < Tel, = € DO,1)

for all r € (0,00). By letting » — oo, we obtain f(z) = f(0) for all z € C.

6. 7o(D) is a "lens” inside D with its vertices at 7,(1) = 1 and 7,(—1) = —1, and
with an angle of ar at them.

Clearly 1*£ is a conformal map of D onto D; = {z € C : Rz > 0}, 2* is a confor-
mal map of D; onto Dy = {z € C\ {0} : |argz| < af} C Dy (2® = e*'°¢% has an analytic
branch by the lemma of analytic logarithm), and j: is a conformal map of D; onto D.
Thus 7, is a conformal map of D onto 7,(D) C D.

Version of Corollary 8.4. Suppose that f(z) > c€ Casz—w €T, z € D, along two
circular arcs centered at w € C and —w € C (and intersecting at w). Let D C D be the
domain bounded by these arcs. If f is analytic and bounded in D or C\ D, then f(z) — ¢
uniformly as z — w in D or C\ D respectively.

Proof. Let a € (0, 1) such that ar is the angle at w formed by the circular arcs bounding
D. Then the function g(z) = 122 maps D onto the sector Sy = {z € C\ {0} : |arg z| <
a2} and C\ D onto S_ = C\ S;. Hence h = f o g is bounded and analytic in S, or S_
and h(z) — c as z — oo along the rays {z € C:argz = a5} and {z € C:argz = —af}.
Thus Corollary 8.4 implies h(z) — ¢ uniformly as z — oo in S, or S_ respectively, and
hence f(z) — ¢ uniformly as z — oo in D or C \ D.



