1. Our observations are stated as Theorems 7?7 and 7?7 and as an example.

Theorem 0.1. Consider the complex linear differential equation
f"+Af =0 (1)

where A is analytic in D(0, R). Let f be non-trivial solution of JM91 in D(0, R). Now,
all zeros of f are simple.

Proof. By Theorem 9.2, if A is analytic in D(0, R), then all non-trivial solutions of (?7?)
satisfy the pointwise estimate

)] < (1F(0)R + |F(0)]) exp ( / At (r t>dt) Be0.2n),r € (0.R). (2)

(i) If f has a multiple zero in the origin, the right hand side of (?7) is identically zero.
Now f has to be identically zero, which is a contradiction. Thus if f has a zero at the
origin, it must be simple.

(ii) Since D(0, R) is open, we can make the same Conclusion in every point of D(0, R)
by translation. Namely, let a € D(0, R) arbitrary and S = R — |a| > 0 so that a €

D(a,S) € D(0,R). Define f,A: D(0,S) = C, f = f(z+a), A = A(z + a). Now, since
A is analytic in D(0,5) and f is a solution of (??) in D(0,5), Theorem 9.2 implies that
f satisfies the pointwise estimate

[Fre)] < (1F(0)]S + 1 F(0)]) exp (/0 [Ate)|(r — t)dt> 0 €[0,2m),7 € (0,5).

If f has a multiple zero at z = a, fhas a multiple zero at the origin and is identically
zero by 77. Now f is identically zero, which is a contradiction. 0

Theorem 0.2. Consider
1%+ Af =0, 3)

where A is analytic in D(0, R) and k € N. Let f be a non-trivial solution of (?7). Now,
all zeros of f are atmost of multiplicity k — 1.

Proof. Let a € D(0, R) arbitrary. Now f(2) = (2—a)"g(z) in D(0, R) for some n € Ny and
g analytic in D(0, R) such that g(a) # 0. Let S = R—|a| so that a € D(a,S) C D(0, R).
Now g has a power series presentation in the disc D(a,S), that is,

g(z) - Zaj(z - a)j7
=0
for some a; € C, for all z € D(a, 5). Since g(a) # 0, we have ay # 0. Now
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for all z € D(a,S) and
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Jj=0

where b; = (n+j)(n+j—1)---(n+j— (k—1))a,, for all z € D(a,S). Therefore

FO) = (2 —a)""h(2),
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for all z € D(a,S). Since A and g are analytic, h(z) has to have a zero atleast of
multiplicity k. Therefore, since ag # 0 and by = 0, we have n(n—1)---(n— (k—1)) = 0.
It follows that either n = 0 or n € {1,2,...,k — 1}. In the first case f(a) # 0. In the
second case f has a zero of order n < k —1 at z = a. 0

Theorem 77 is a special case of Theorem 77 and can thus be proved by using the
power series argument in the proof of Theorem ?7. On the other hand, Theorem 77 can
be proved by following the proof of Theorem ?? and using an estimate which is analogous
to (??), if such an estimate exists.

Let f be as in Theorem ??. If f has a zero of order k we have in Theorem 7?7 S = 0.
It follows that f is identically zero.

Example. A non-trivial solution f of (??) with an analytic coefficient A can have a zero
of multiplicity £ — 1 when (??) is considered in a bounded domain D. Let

f(2) =25 pabt = 2R 4a),
where a > 0. Now f has a zero of multiplicity £ — 1 at the origin. Moreover,

f(k) (2) = ((2:_—11))!! k-1 :

so that
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Taking a > 0 large enough A is analytic in D.
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2. We will first state the results, and then provide the proofs. Bellow we use the notation
7y — 4!
(n) T nl(G-n)!”

Theorem 0.3. Suppose that f is a solution of f*) + A1 f*D 4+ + A f' + Agf =0
in D(0, R), where A; is analytic in D(0, R) for all j. Then

| f(re)| < Sexp </ C(tew)dt> . 0€0,2m), r € (0,R),
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where (n)
k—1 i j—n—1 ,. 1 (m) '
. j J (j) ’(Ag (0)£(0)) ’Rijrner LRj
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The term (Ag-n) (0)£(0))™ above means functions (Ag»”)f)(m) value at the orign. In

the nonhomogeneous case we obtain the following result.
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Theorem 0.4. Suppose that f is a solution of f* + A 1 fE D4+ A f +Aof = Ay
in D(0, R), where A; is analytic in D(0, R) for all j and Ay #0. Then

|f(re”)| < B(re’) + /OT B(se?)C(se™) exp (/T C’(teig)dt) ds, 0 €[0,2m), r € (0, R),

where
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In the proofs of these two theorems, we use the following two Lemmas.
Lemma 0.5. Let f and g be analytic in some domain. Then gf9) = izo(—l)”(i) (g™ fya=—m),

Proof. The case j = 1 is a form of Leibniz rule, so suppose that the assertion holds for
some j € N. Then

gf(j+1) _ (gf(j))' _ g'f(j)
J

- (i(—l)” () (9(”)f)(j”)>/ =Y (D)o
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Since a simple calculation shows that (i) + (nil) = (]H) the assertion follows by induc-

tion principle. O



Lemma 0.6. Let g : (0, R) — Ry be integrable and 0 < t; <ty < ... <t, <r < R.

Then
/ / / t)dtdt, - - - dt, = /0 ' g(t) (r ;t) dt.

Proof. 1t is known by Fubini’s theorem that the assertion holds for n = 1, so suppose it
holds for some n € N. Then

tn+1 t1 tnt1 1 — )
/ / / (t)dtdty - - - dt, = / / (s L dtdt, g
= [ ot )X{mnﬂ}()dtdtnﬂ

tn )"
—/ )/ MX{K%H}( tns1)dtngadt
0 0 n.
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by Fubini’s theorem. The assertion follows by induction principle. U

Now we may prove the theorems above.

Proof of Theorem ?7. By applying the equality

- /0 F1(€)dE+ £(0), z € D(0, R),

k times, we obtain

z r& Ek—1 (J .
_ / / / F®(&)deydey s -- d£1+zf )i, = € D0, R).
0 0 0

Thus, by using the ODE, we have
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By using Lemma 7?7, we may write the integrals as
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we have
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| f(€—jn)| [dEk—janl - - - [d&i] + S.

By setting z = re and &; = t;¢, Lemma 77 gives
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The assertion now follows by Gronwall-Bellman inequality.
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Proof of Theorem ??. Similarly as in the proof of Theorem 7?7, we have

o - » L £G)(0)
/ / k(€k) Z Aj(fk)f(])(fk)dﬁk ceedéy + Z f ]'(0) i

7=0
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<3 /0 /0 A, (E)fO €y - - den| + Au(E0)dey -
k—1 (-)
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By Lemma ?? we have

§k1

Ap(&p)dEy - - -d&r | <

/ / |Ak tke |dtk

/0 | A (tre" )\%dt,

so, the same calculations that we did in the proof of Theorem 7?7 now show that

}f( )‘<B7“e /C’tew ‘ftew}dt

The assertion now follows by exercise 3.

3. Suppose that
u(z) < c(x) +/ u(s)v(s)ds, x € (a,b),

where u, v, c: (a,b) — [0,00) are integrable functions. Then

u(z) < e(z) + /O»T c(s)v(s) exp (/jv(r)dr) ds.

Proof. Let
Fs) =exp - / Sv(r)dr) / " o(r)u(r)dr
Then
7'(s) = (u(s) - / “or)ulr)dr)o(s) esp ( / o))
Hence
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by (??) and (?7). Now, by (?7) and (??), we obtain
/:U(s)u(s)ds = exp (/: U(T)dr)f(x)

< / " e(s)0(s) exp( / " o(r)dr — / Sv(r)dr)ds
< / " e(s)0(s) exp ( / ' u(r)dr ) s

Thus the assertion follows by the previous inequality and the assumption (?7).

Suppose that c is non-decreasing. Then the earlier result implies that

s=t

u(z) < c(z) + [— c(x) exp (/;U(T)drﬂ

= c(x) exp (/: v(r)dr).

s=a

4. Let f(2) = f'(z) = f"(z) = €%, where z € D. If f"+ Af =0and z =17 € (0,1), then
2

e" < 2exp (/Or(r — t)dt) = 2exp <%)

by the Gronwall-Bellman inequality.

Let f(z) = 1=, z € D. Then [ satisfies f” — ﬁf = 0. Now f(0) = f'(0) = 1,
and if = argz = 0, then |f(re”)| = =, and the inequality of Theorem 9.2 gets the

1
form

< 2exp ( I ff"_‘tfg dt)

= 2exp(—2r — 2log(1 — 7)) = 2> 1(1 — r)*.

Let f(z) = eﬁ, z € D. Then f satisfies f” — (ﬁ + ﬁ) f =0. Now f(0) =
f'(0) = e, and if # = 0, the inequality of Theorem 9.2 holds in the form

1 1
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eT—r < 2e7 3"
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1 <2e73"6eb -2,

In every case above, the right hand side of the inequality grows faster than the left hand
side, as  — 17. Hence, it looks like the result of the Theorem 9.2 could be improved.



