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1. Introduction. In this paper we shall consider functions p(z) regular in

the open unit circle E and the solutions y(z) of the differential equation

(1.1) y"(z) + p(z)y(z) = 0.

The ratio

(1.2) /(*) = u(z)/v(z)

of any two independent solutions u(z) and v(z) of (1.1) will be a function

f(z), meromorphic in E with only simple poles, and such that/'(z)?^0. We

shall say that a meromorphic function which satisfies these two conditions

belongs to the restricted class. The Schwarzian derivative of f(z),

(1.3) {/«, z) = [f"(z)/f'(z)}' - [f"(z)/f'(z)]2/2

is connected with p(z) by

(1.4) {f(z), z] = 2p(z).

Conversely, for any meromorphic functions of the restricted class the

Schwarzian derivative is regular.

The vanishing of a (nontrivial) solution

y(z) = Au(z) + Bv(z)

of (1.1) at the points Zx, ■ • ■ , z„ is equivalent to f(z) assuming at these points

the value — BA~1. It follows that/(z) is univalent in E if no solution of (1.1)

(except the solution y(z) = 0) has more than one zero in E. Conversely, every

univalent function f(z) in E can be written as the ratio of two independent

solutions of the equation (1.1) where p(z) is defined by (1.4). These connec-

tions were first stated by Z. Nehari in [6](2) and used there to obtain the

following theorem (Theorem I, [6]):

In order that the analytic function f(z) be univalent in \z\ <1 it is necessary

that
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(1.5) | {/GO, a} |   ^6/(1-  |z|2)2,

and sufficient that

(1-6) | {/(«),*} |   g2/(l- |z|2)2.

This theorem is sharp, as is shown for the necessary condition by the

Koebe extremal function/(z) =z/(l— z)2, and for the sufficient condition by

an example due to E. Hille [4]; we shall discuss this example in detail later.

2. A nonoscillation theorem for the unit circle. The differential equation

(1.1) is called nonoscillatory in E if none of its solutions (except yiz) =0) has

infinitely many zeros in P. Correspondingly we call a single valued mero-

morphic function finitely-valent in a domain D if the equation /(z) = a has for

each a only a finite number of solutions z in D. By a slight modification of the

proof leading to the sufficient condition (1.6) of Theorem I in [6], we obtain

now the following nonoscillation theorem:

Theorem 1. Let piz) be regular in \z\ <1 and assume there exists x<>,

0<#o<l, such that for allz with Xo<\z\ <1

(2.1) \piz)\   g 1/(1-  |z|2)2.

Then the differential equation

(1.1) y"iz) + piz)yiz) - 0

is nonoscillatory in |z| <1. Moreover, for every 7>0, there exists a function

qiz), regular in \z\ < 1, such that for allz in \z\ < 1

(2.2) \q{z)\   g(l+V)/(l-  |z|2)2

and such that the equation

v"iz) + qiz)viz) = 0

is oscillatory in \z\ <1 (i.e. has at least one solution viz) with an infinity of zeros

there).

Proof. Let Zi, z2 (zi ?^z2) be any two points inside the open unit circle P. Zi, z2

determine uniquely a circle C passing through them and orthogonal to | z| =1.

Let us call that part of C which lies between Zi and z2 and inside E "the

orthogonal arc between Z\ and z2" and let us denote it by [ziz2]. Let x0 be

fixed and denote the ring x0< \z\ <1 by P. Assume now that there exists a

nontrivial solution y(z) of (1.1) with infinitely many zeros in P. From this

infinity of zeros we choose a sequence converging to a point a on | z| =1. By

an elementary geometric consideration it follows that we can choose two zeros

zi and Zi of yiz), belonging to this sequence, such that they, together with

the orthogonal arc between them, lie in P.

There exists a linear transformation from | z | < 1 onto | T | < 1 given by
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(2.3) z - e»    ~ " , \a\ < 1,
1 - af

which carries zi and z2 into f=p and f=— p respectively (0<p<l). (2.3)

transforms [ziz2] into the segment (— p, p). Let/(z) be the ratio of any two

independent solutions of (1.1) and define g(f) for |f | <1 by

(2.4) |(fW(.»l£il).

The substitution (2.3) transforms the differential equation (1.1) into

(2.5) yi"(r) + #i(Dyi(f) = 0,

where

(2.6) 2pi(r) = {g(f), f}

and

(2.7) y(^f^) = yiG>(f).
\     1 — af/

Here o-(f) is regular and ^0 in | f | <1. It follows that there exists a solution

yi(f)^0 of (2.5) such that yi(p) =yi( — p) =0. Setting {=x+iy, multiplying

(2.5) on the segment (—p, p) by yxdx, and integrating from —p to p, we obtain

I" \y{ \2dx=  f   p^yil^x.

Writing yi = u -\-iv we have

/*'     2 z C 2 2
(2.8) I    («I + i;I)^=   J    Pi(m  +v)dx.

It can be shown that (2.3) and (2.4) imply

(2.9)        | {f(z),z} |(i- |z|t= I {«(*■), r} la- kl2)2.

It follows therefore by (2.1), (1.4) and (2.6) that

1
pi(x)     ^ —-, — p ^ x < p.11 (1 - X2)2

Hence,

/'                       I       f"   ra2 + v2                r'u2 + v2
px(u2 + v2)dx  g  I      -Jx < p2 -dx.

I     J_p  (l-*2)2 J_p   (p2-*2)2

Now the integral inequality
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/"       u2dx r"
-<        u'2dx

_p  (p2 - x2)2     J_,

holds for continuously differentiable real functions u{x), —p^x^p, which

have at +p zeros of the first order [6]. We may apply this inequality to both

u and v and obtain, in view of (2.10),

f   piiu2 + v2)dx\ < f   iul + v\)dx,

which gives the desired contradiction to (2.8) and we have therefore proved

the main assertion of the theorem.

To prove the sharpness, consider for any 7>0 and any complex C the

function

(2.11) viz) = (32 - l)1'2 sin {y log (1 + z)/(l - z) - C}.

viz) is regular for | z| < 1; to determine viz) uniquely, take in its definition the

principal branch for the square root and for the logarithm. The function

qiz) =  - v"(z)/v(z) = (1 + 472)/(l - z2)2

is then regular in P and satisfies condition (2.2). It is easily seen that if

| Im {C}\ <wy/2 (in particular if Cis real) then viz) has infinitely many zeros

in P and so the proof of Theorem 1 is concluded.

The differential equation considered just now is a special case of Hille's

example, mentioned above. Hille considers the equation

(2.12) y"iz) +        °        yiz) = 0, | z | < 1,
(1 — z2)2

where a is the complex parameter. His result is that no solution of (2.12)

assumes more than one zero in P if, and only if, a belongs to the interior or

to the boundary of the cardioid given byo= — 2e'* — e2i*. This cardioid goes

through the points a = +1 and a= — 3, contains |a| ;gl, and is contained in

|a| ^3; the point a— — 3 gives the differential equation corresponding to the

Koebe extremal function, while a = l+472 (7>0) shows the sharpness of the

sufficiency condition of Theorem I of [6] and, as just shown, also the sharp-

ness of Theorem 1.

This nonoscillation theorem may now be stated as a criterion of finite-

valence for meromorphic functions of the restricted class and, in fact, for

meromorphic functions in general.

Corollary 1. Letf(z) be meromorphic in \z\ <1 and assume that

(2.13) | {fiz),z\ | g 2/(1- | z|2)2 for x0 < | z| < 1, 0 < x0 < 1.

Then /(z) is finitely-valent in \z\ <1.
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Proof. Assume that there exists a complex number a (which may be w)

such that/(z) — a=0 has an infinity of roots in E. It follows then again that

there exist zx, z2, (zi5^z2) such that f(zx) —f(z2) =a, and that zu z2 and the

orthogonal arc between them lie in R. Consider now/(z) and the correspond-

ing differential equation y"(z)+p(z)y(z) =0 not in E, but only in any simply-

connected domain D containing the arc [zi z2] and contained in R. We obtain

therefore a solution y(z) of (1.1), analytic (and therefore single-valued) in D,

such that y(zi) =y(zz) =0, while p(z) satisfies (2.1) in D (and especially on

[ziz2]). But only this was used in the proof of Theorem 1; the behavior of p(z)

and y(z) outside D (and of pi(D and yi(f) outside the map of D under (2.3))

is obviously immaterial for the proof.

The sharpness of Theorem 1 implies the sharpness of the corollary. By

(2.11) and (1.2) this is established by the functions

/ 1 + z\
f(z) = tan (7 log —— 1, y > 0.

In a recent paper [7], Z. Nehari obtained a series of nonoscillation theo-

rems for the equation y"(z)-\-p(z)y(z) =0 in various domains. For the unit

circle he proved (Theorem III, [7]) that if p(z) is regular in \z\ <1 and if

/> It \p(ei«)\dd < 00,
0

then the differential equation is nonoscillatory. The integral on the left-hand

side of (2.14) is defined as the limit, for p—*1, of the nondecreasing function

f     I P(pe<°) I dd
Jo

and (2.14) is therefore equivalent to

/.2r I p(pei») \dd <C, C < a., 0 < P < 1.
0

This theorem may be deduced from Theorem 1. Indeed, setting

P(z) = Y, anzn,
n=0

(2.15) implies

Un   ^ — I      —--pdd<-, ra = 0, 1, • • • .
2xJo Pn+1 27rp"

Letting p—»1, we obtain I a„\ j£ C/2ir = G and therefore
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\P(z)\ ^ E|o»l|s|n^ ;-j-, •
n-0 1   — | Z I

This implies now the existence of an xe, such that (2.1) holds for x0 < \ z| < 1,

i.e., the assumption of Theorem 1 is satisfied.

3. A finite-valence theorem for multiply-connected domains. Let D be a

simply-connected domain in the z-plane, having at least two boundary points

and let w=if/(z) be a function mapping D onto \w\ <1. Let D' be any closed

domain lying in the interior of D and denote by P' the domain D — D'. The

map of P' under the transformation w=\j/(z) covers a circular ring P, xa < \ w\

<1, with 0<Xo<l and x0 near enough to 1. Let/(z) be a meromorphic func-

tion in D and define giw) in | w\ <1 by

(3.1) giw) = fi^iw)).

f(z) is finitely-valent in D if and only if g(w) is so in \w\ <1. The trans-

formation formula for {/(z), z} under the conformal mapping w=ipiz) is

/ At \ 2

(3.2) {giw), w] = ^—j [{/(*),*} - {w,z}].

Applying now Corollary 1 to giw) it follows that/(z) will be finitely-valent

in D if the condition

, < >        , ii 2 # 2
(3.3) |   /(*), z] - {*(*), z] | g-j-—^ 3

(1 - | 4>iz) |2)2  dz

holds for all z in D — D'. Similarly it follows that if piz) is regular in D and if

(3.4) \Piz)-U(z),  Z       ̂   -:-j-
I 2   l ' (1 -U(z)|2)2  cfzl

holds for all z in D — D' then the differential equation (1.1) is nonoscillatory in D.

We remark that conditions (3.3) and (3.4) are independent of the normal-

ization of the Riemann mapping function w=\piz) mapping D onto |w>| <1.

Let Wi=\j/iiz) be another such function mapping D onto |wi| <1. The func-

tion Wiiw) =}pii\p~1iw)) is a linear mapping of |w| <1 onto |wi| <1 and it

follows, by the invariance of the Schwarzian derivative with respect to all

linear transformations, that {wi(z), z\ = {w(z), z], i.e.,

(3.5) {Uz),z\ = {*(*),*}.

Moreover, for a linear mapping of the unit circle onto itself, the relation

1 — | w^w) |2       dwi

1 — | w \2 dw

holds, which implies
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1 d4n 2_ 1 # 2

(3>6) (1 - | Uz) I2)2 ~d7  "  (1 - | *(z) |2)2  &   '

(3.5) and (3.6) show clearly that conditions (3.3) and (3.4) are independent

of the normalization of the mapping function ^(z).

As an example for condition (3.4) we mention the half-plane Re {z} >0.

In this case,

z- 1
w = ip(z) = ——

z + 1

and condition (3.4) becomes

(3.7) | p(z) | g 1/4*2 (z = x + iy).

The differential equation (1.1) is therefore nonoscillatory in Re {z\ >0 if

(3.7) holds for all points of this half-plane except those belonging to a closed

bounded subset. Sharpness is shown by the Euler equation

/'« + —y(*)-o (c>i),
4z2

which plays an all-important role in the real nonoscillation theory (see Hille

[3]).
In the case of the strip | Im [z)\ <ir/4, we have

w = \p(z) = tan (iz)

and (3-4) becomes

| p(z) + 11 £ l/(cos 2y)2 (z = x + iy).

While condition (3.3) was stated for schlicht simply-connected domains,

it will evidently also hold for non-schlicht domains which can be mapped onto

the unit circle. This is the case for the universal covering surfaces of multiply-

connected domains with more than two boundary points. Restricting our-

selves to domains bounded by a finite number of Jordan curves(3), we obtain

Lemma 1. Let D be a multiply-connected domain in the z-plane, bounded by

a finite number of Jordan curves. Let S be its universal covering surface (and

denote the affix of S also by z). Let w=ip(z) map Sonto \ w\ < 1 and let D' be any

closed domain inside D. A function f(z), meromorphic and single-valued in D,

will be finitely-valent there, if condition (3.3) holds for all z in D — D'.

We remark first that the expressions {\p(z), z} and

2 # 2

_ (1 -|*(z)|2)2 Tz

(3) See Bieberbach [l, pp. 44-56] and Nevanlinna [9, pp. 21, 22].
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are not only, as above, independent of the normalization of ypiz), i.e., single-

valued as functions on S, but they are, in addition, single-valued functions in

D. This follows from the fact that the different branches of \piz) (as a function

in D) correspond to linear transformations of \w\ <1 onto itself.

For the proof of the lemma, let z be the coordinate in D and not on S, so

that ^(z) is a many-valued function. By connecting the n boundary curves

Ci, • • • , C„ of D by n — 1 cuts 71, • • • , 7n-i, we obtain a simply-connected

domain D*. D* allows us to fix uniquely a branch ^,(z) of i^(z) (which will be

regular and single-valued for z(£D*). xf/tiz) maps D* onto a simply-connected

domain Ff whose boundary consists of 2n — 2 arcs Cj, • • • , C2„_2 on \w\ =1

which are the maps of the 2« —2 components into which the curves

Ci, • • • , C„ are decomposed by the system of cuts, and of 2n — 2 arcs inside

\w\ =1 which are the maps of the n — 1 cuts 71, • • • , 7„-i. We adjoin n — 1

of these arcs, called 7*, • • • , 7^-1, to F* and obtain a fundamental domain

Fi. To each z(ElD corresponds exactly one w=\j/tiz) in Pj. Let us call the arcs

7i> • • • , Yn-i, together with the n — 1 equivalent arcs which belonged to the

boundary of P*, the inner boundaries of P,-. ̂ ,-(z) maps D' onto a region F<.

While certain segments of the inner boundaries of P,- belong to P/ or to its

boundary, it is clear that P/ lies inside a circle \w\ ^x0<l.

Let now the function giw) =f(}p~1iw)) be defined only for a»£F,-. This

function is meromorphic and single-valued, and it follows that the condition

I {giw),w}\ ^2/il-\w\2)2

holds for wQ.Fif^R (where P is again the ring x0 < \ w\ <1). This ensures the

finite-valence of giw) in P,- and therefore of/(z) in D. Lemma 1 is established.

This lemma enables us now to obtain a simpler criterion for the finite-

valence of single-valued meromorphic functions in the case in which the n

boundaries of the domain are analytic Jordan curves.

Theorem 2. Let D be a domain in the z-plane such that its boundary C con-

sists of a finite number of analytic Jordan curves. Let zoGT? and denote by Ce the

level curve g(z, z0, D) = e, e > 0, of the harmonic Green's function giz, z0, D) of the

domain D with pole at z0. Letfiz) be meromorphic and single-valued in D and set

(3.8) Mie) =Max | {/(*), z}\.

If
(3.9) lime2M(e)=0,

then /(z) is finitely-valent in D.

Proof. Suppose D is not simply-connected. Choose ipiz) on S so that

i^-1(0) =z0. Define the different branches of ^(z) (as a function in D) as in the

proof of Lemma 1, but assume that none of the cuts 71, • • • , 7„_i go through

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1955] COMPLEX NONOSCILLATION THEOREMS 167

z0. Let the branch ^»(z) be defined by ^<(zo) =0, and consider the behavior of

this branch in D and on C. From the analyticity of the boundary curves it

follows that ^i(z) and its derivatives are piecewise analytic on C. Moreover,

dipi/dz?£Q in D = D\JC and it follows that, for all z in D,

(3.10) | {*<(«). »}'| -|{*(s).*} | £ If. 0<M<™,

and

(3.11) | dfc/dz \^m, 0 <m < oo.

For every e > 0 let us now consider the following two closed regions in D:

Di(t) = {z:g(z,z0,D) £«}

and

D2(e) = [z:z = ip-^w), | w\ ^ e_f}.

We then have(4)

(3.12) D&) D Z7,(e).

To prove this, we consider the Green's function G(z, z0, S) of the universal

covering surface S. z and z0 are now both on S, the pole z0 is defined by

^(zo) =0; i.e., zo is the point in the ith sheet of S whose trace in D was also

denoted by Zo. Let now Dz*(e) be the region on 5 defined by

D*z(') = {z:G(z, z0, S) £«}, zGS.

D2(e) is therefore the trace of D2*(e). g(z, z0, D) was defined in D; we now

associate with every z£5 the value which g(z, z0, D) assumes at the trace

of this point and so obtain a function G(z, z0, D). G(z, z0, D) is positive and

harmonic on S, except for infinitely many logarithmic poles (at all points

of S whose trace in D is z0). Let us denote by D*(e) the union of the infinitely

many replicas of Di(e) on S; i.e.,

Dx*(e) = {z:G(z, zo,D)^e}, zGS.

By the just mentioned properties of G(z, z0, D) and the fact that G(z, z0, S)

has only one pole (which coincides with one of the poles of G(z, z0, D)) and

vanishes at the boundary of S, it follows that for each zGS

G(z, zo, D) ^ G(z, zo, S), zGS,

and therefore

Dt(t) D J?f(e), e>0.

Projecting now onto the z-plane, we obtain the desired relation (3.12).

(*) Nevanlinna [9, pp. 50-51].
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(3.12) implies now that |^(z) | j^e-' for the level curve Cc ig(z, z0, D)=t)

and in particular

| Hz) | ^ <r«, z G C«, « > 0.

We have therefore for each zGCe

1 " | *.(*) |2 = (1 + | Hz) | )(1 - | Hz) | )< 2(1 - e~') < 26,

which implies

(3.13) M(«)(l - | Hz) |2)2 < 4M(e)*2.

Using now our assumption (3.9), it follows from (3.10), (3.11), and (3.13)

that there exists e0 > 0 so that

| {/(z), z} - {Hz), z} I ̂  2 -^f
(1 - I Hz) I2)2   dz I

for all z with 0 <g(z, z0, D) <e0, i.e., for all zGP —7J>i(«o)- In the last inequal-

ity the subscript indicating the branch is now unnecessary; the assumption

of Lemma 1 is therefore fulfilled and we have proved the theorem for a

multiply-connected domain.

If D is simply-connected we use condition (3.3) (as stated at the beginning

of this section). Relations (3.10) and (3.11) hold now for the single-valued

function ^(z) and in this case, clearly, 7Ji(e) =P2(e). Theorem 2 is therefore

established.

Using the theorem quoted at the end of §2, Z. Nehari proved the following

theorem iTheorem IV, [7]):

If Piz) is regular in a isimply-connected) domain D bounded by an analytic

Jordan curve C, and

(3.14) f |p(z)cfe| < oo,
J c

then the equation (1.1) is nonoscillatory in D.

The integral in (3.14) is defined as

lim 7(e),        7(«) =  f  | piz)dz |, * > 0,

where C£ is again the level curve of g(z, z0, D). lit) grows monotonically with

decreasing e and (3.14) is therefore equivalent to

(3.15) f  | piz)dz| < M, 0<M<oo,€>0.

This theorem may be deduced from Theorem 2. For any z inside the domain

bounded by the level curve Ct we have
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2wiJct ^(f) — lA(z) <W<fc

which for «—>0 gives with (3.15)

| p(z) |(1-| *(z) |2) g (M/2x) | d+/dz |, «G!J.

Denoting now

Max | p(z) | =- M (t),

and using the fact that on C, \^(z)\ —e~' and that dyp/dz is bounded in D, it

follows that

lim e2M(e) = 0.

But this is obviously the assumption of the nonoscillation analogue of Theo-

rem 2 for simply-connected domains.

4. Non-Euclidean distance. Let us denote the non-Euclidean distance of

any two points Zi and z2 in the unit circle £ by | [zi Zz]\. This distance is de-

fined by

(4-1) |[«i«»]|-f 1      |    .,'
JlMXMf]     1   -   |   Z|2

where the integration is along the orthogonal arc between Zi and z2 which we

denote, as before, by [ziZ2].

We saw in Theorem 1 that condition (2.2) is not sufficient for nonoscilla-

tion. However, we obtain now—again by a modification of the proof leading

to the sufficiency condition of Theorem I of [6]—the following theorem:

Theorem 3. Let p(z) be regular in \z\ <1 and assume that

(4.2) | p(z) | g o/(l - | z |2)2, a>l,for \z\<l.

Let y(z) be any (nontrivial) solution of

(l.l) y"(z) + p(z)y(z) = 0,

and assume that y(zi) =y(z2) =0, Zi5^z2, |zi| <1, |z2| <1. Then

a1'2 + 1
(4.3) | [z, z2] | > log —--•

a1'2 — 1

Moreover, the bound on the right-hand side of (4.3) is, for a—* oo, of the correct

order as a function of a.

Before proving this theorem, we remark that for a—»1 the right-hand side

of (4.3)—*». But, indeed, a = i corresponds to the sufficiency condition (1.6)
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of Theorem I of [6], which ensured that no solution y(z) has more than

one zero in P. Moreover, condition (2.1) of Theorem 1 implies (4.2) with

a = 1/(1 — xl)2, 0 <x0 < 1, so that whenever we apply this nonoscillation theo-

rem we actually get also a lower bound for the non-Euclidean distance.

Proof. We choose again the transformation (2.3) so that Zi and z2 go into

f = +p, 0<p<l. By the invariance of the non-Euclidean distance, we have

i r        ii      i r ii       C"      dx 1 + p
(4.4) | [zi zi] | = | [-p P]   =- = log--        (r = * + *»•

J -„   1 — x2 1 — p

(4.3) will therefore be established if we can show that

1 + p a1'2 +1 1+ 1/a1'2
log-> log-= log->

5 1 - p        B a"2 - 1        * 1 - 1/a1'2

i.e., that

p > 1/a1'2.

Assume, conversely, that

(4.5) 0 <p g 1/a1'2.

This implies

apl ^ p2.

Moreover, it follows from 0 <p < 1 that

(p2 - x2)2/P* < (1 - x2)2   for - p g x g p, x * 0.

Multiplying the last two inequalities we obtain

(4.6) aip2 - x2)2 ^ p2(l - x2)2, - p g x^ p

with equality possible only at x = 0.

By the transformation (2.3), equation (1.1) again transforms into

(2.5) yi'(f) + Piit)yiit) = 0

with a solution yi(f)^0, yi(f) =M(f)+*»(f) such that yi(+p)=0. As condi-
tion (4.2) is again invariant with respect to the transformation (2.3), it fol-

lows that

/'                        I          r'    u2 + v2
pi(w2 + v2)dx\ ^ a I      -dx        (f = * + ty).

-p                          I         J -„   (1 - x2)2

However, (4.6) implies

r"   u2 + v2               r"     m2 + v2
a I      -dx < p2 I       -cfz,

J_„ (l- *2)2 J_, (p2 -:*2)2
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so that

/<• /•'     w2 + v2

But this last inequality is (2.10) and assumption (4.5) leads therefore to

the contradiction which followed in §2 from (2.10). We have therefore proved

the main assertion of the theorem.

To prove the second part of the theorem, we again use Hille's equation

(2.12) y"iz)+     a ,.,?(») = o,
(1 - z2)2

with a = l+472, 7>0. Its solutions were given (see (2.11)) by

(4.7) yiz) = (z2 - l)1'2 sin iy log (j^) ~ C} '

which, as stated, have infinitely many zeros in P if

(4.8) | Im {C} | < wy/2.

These zeros are the points z„ for which

/l + zn\
ylogl-)-C = »7r,    n = 0, ±1, ±2, • • • .

M — zj

By the transformation

(4.9) w - (1 + z)/(l - z)

\z\ <1 is transformed into Re {w\ >0. To the zeros z„ correspond in this

half-plane the points wn given by

(4.10) w„ = ec<-<-enrlt, n = 0, +1, • • • ,

which for C satisfying (4.8) lie on a ray going through w = Q inside the half-

plane. (4.10) implies now that for any such fixed solution (4.7), the non-

Euclidean distance in the half-plane | [w„ wn+i]| is independent of the sub-

script n and that for different solutions (4.7), | [wn wn+i]\ = | [z„ zn-t-i]] is only

a function of | Im {C] \. It is easily checked that this function attains its

minimum for Im {c} =0 and we consider therefore the solutions (4.7) for

which C is real.

By (4.1) and (4.9) the non-Euclidean distance in Re {w} >0 is given by

I r        nl      i   r         \dw\
\[w'w"]\=-\ J-L,

where w = u+iv and the integration is now along the arc orthogonal to u =0.
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It follows from (4.10) that for the zeros z„ of the solutions (4.7) with real C

(4.11) |   [z„Zn+l]|   =|   [Wn   «Wl]|=-   I -=^"-
2 J „„       ra       27

Substituting 1 +4y2 for a in the right-hand side of (4.3) we obtain, for a—»°o,

a1'2 +1 1 + 1/a1'2       2 2 1
log-= log-~-=-~ — •

a1'2 - 1 1 - 1/a1'2     a1'2      (1 + 472)1'2       7

The ratio of the actual distance (4.11) to the bound given by our theorem

converges therefore for a—»oo to 7r/2. This concludes the proof of Theorem 3.

Theorem 3 is a generalisation of the sufficiency part of Theorem I of

[6]. The next theorem generalises now the necessity part of this theorem.

Theorem 4. Let p(z) be regular in \z\ <1 and assume that there exists a

constant a, a>x, such that for any two zeros Zi, Z2 (zi?£z2, |zi| <1, |z2| <1) of

any (nontrivial) solution y(z) of

(1.1) y"(z) + p(z)y(z) = 0

the relation

(4-12) I [zi zz] I ^ log ———
a1'2 — 1

holds. Then

(4.13) \p(z)\ <3a/(l-|z|2)2 for\z\<\.

Moreover, the bound on the right-hand side of (4.13) is, for a—»«, of the correct

order as a function of a.

Proof. Let us denote

a1'2 +1 1 + l/o1'2

Condition (4.12) is equivalent to the statement that every function f(z),

defined as the ratio of two independent solutions of (1.1), is univalent in every

non-Euclidean circle of radius r. Choosing now this circle so that its center is

at z = 0, it follows from (4.14) and (4.4) that its Euclidean radius is given by

l/a1/2. Let now

z = z'tl/a1'2).,

f(z) =/(s'd/a1'2)) =£(z'), \z\ < 1/a1'2.

It follows that

{/(*), z) =a{g(z'),z'}.
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giz') is univalent in |z'| <1 and it follows from (1.5) that

| {«(V), «'} j.'-o 3 6.

However, the equality sign will hold here only if giz') is the Koebe extremal

function or one of its linear transforms. But these functions have either a

double pole or a zero of their derivative on |z'| =1. The corresponding/(z)

could therefore not be of the restricted class in |z| <1. It follows that

(4.15) | {/(z), z} |_ < 6a.

Let now Pi be a non-Euclidean circle of center z=z0 (| z01 <1) and radius

r. The transformation

z = (f + z0)/(l + z0f)

maps Pi onto |f| <l/a112. Since/(z) was univalent in Pi, it follows that the

same is true of g(f) =/((f+Zo)/(l+zof)) in |f | <l/a1'2. (4.15) implies there-

fore

I {f(f). f} |r-o < 6a,

and it follows from (2.9) that

I {/(z),z}|,=2o(l-|zo|2)2<6cr.

But this clearly entails (4.13) and we have proved the main assertion of the

theorem.

The proof of the second part of the theorem uses again Hille's example,

this time for a< — 3(6). Setting, therefore, a —I — 4y2, 7>1, the solutions of

(2.12) will be given by

(4.16) y(z) = (z2 - l)1'2 sin {iy log ((1 + z)/(l -z))-C).

We first map \z\ <1 onto Re {«;"} >0 by means of (4.9). This half-plane is

then mapped by

f = iy log w, f = x + iy,

onto the strip |*| <iry/2, and it follows that, for 7>1, some solutions (4.16)

will have at least two zeros in P. (For y > 2, every solution will have at least

two zeros and so on.) Two "successive" zeros Zi and z2 of such a solution

correspond to points J"i and f2 in the strip, such that

fi— f i = ?r

The corresponding points in the half-plane will, therefore, be connected by

Wi = wieirlr>.

(•) Note that now Hille's parameter a is not the constant appearing in the statement of

our theorem (but is equal to —3 times this constant).
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For any two such points wi and w2, | [wx wz] \ will be only a function of their

argument and this function attains its minimum in the symmetric case.

Setting v>x*=«**'**, wt*=e~iTl2y we obtain

| L«l z2J | = | [Wi Wz\ | ^ | Lu»i w2J | = — - = — I —-
2 J [«* w*2]       M 2 J _t/2t  cos 0

1 1 + sin (t/2t)
= — log-<

2 1 - sin (x/2?)

and this lower bound for | [zi z2] | is actually attained by all functions (4.16)

for which Re {C} = —jt/2.

For y—><*>,

1 1 + sin (it/2t)               4y/jr + 1
— log-~ log-,
2 1 - sin (7r/27) 6 47/T - 1

so that by our theorem the coefficient of (1 — |z|2)-2 in the bound for p(z)

would be asymptotically equal to 4872/ir2. However, the actual coefficient is

(472—1), so that their ratio converges for 7—>oo to 12/ir2. This concludes the

proof of Theorem 4.

We see that if in Hille's example (2.12) the parameter a moves to the left

from —3 along the negative real axis, we successively obtain solutions y(z)

with more and more zeros in E; however, the equation will always remain non-

oscillatory. It follows therefore that no condition of the form

[p(z)| <C/(l-|z|2)2,

with given C, is necessary for nonoscillation of (1.1).

The two theorems of this section may be considered as conditions for

functions f(z), meromorphic in E, to be there "locally univalent of non-

Euclidean modulus r." Such functions are by their definition in the restricted

class. The corresponding Euclidean class of functions was first considered by

Montel [5].
5. Euclidean distance I. We consider again functions p(z) regular in E

and the zeros of any solution y(z) of equation (1.1). We saw that the existence

of a common positive lower bound for the non-Euclidean distance of two zeros

is equivalent to the assumption

p(z) =0(1/(1-I z|2)2).

Clearly, conditions on p(z) which ensure similarly the existence of a common

lower bound for the Euclidean distance must be more restringent. Indeed,

Hille's example (2.12) shows that the existence of a non-Euclidean bound

does not imply the existence of an analogous Euclidean bound, even in the

case (corresponding to —15^a< —3) where every solution y(z) has at most

two zeros in E.
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Theorem 5. Let piz) be regular in \z\ <1, and set

(5.1) Mit) = Max | piz) |, 0 g t < 1.

Assume that

(5.2) Mit) ^ 1/(1 - t2)        /or r £ f < 1, 0 < r < 1.

Let yiz) be any inontrivial) solution of

(1.1) y"iz) + piz)yiz) = 0

and assume that y(zi) =y(z2) =0, zi?*z2, |zi| <1, |z2| <1. PAe«

(5.3) | zi — z21 ̂  d

where

(5.4) cf = 2(1 - r2yi\

Proof. We assume that (5.2) holds and that there exists a solution yiz)

of (1.1) (y(z)^0) such that

(5.5) | zi — z21 = S < d.

Multiplying (1.1) by ydz and integrating by parts from zi to z2 along a path

in E we obtain

[yy'Y'i- f"\y'\2dz-+ fp\y\*dz = o,

the "Green's transform" of (1.1). Using now y(zi) =y(z2) =0 and choosing as

path the segment (zi, z2) (whose length element we denote by da) we obtain

(5.6) f"\y'\2do-^ f\p\ \y\2dc.

We shall reach the desired contradiction by three consecutive transforma-

tions of this inequality; these transformations result from very simple trans-

formations of the segment (zi, z2).

For the first transformation choose a, 0 <a< 1, such that | Zi| <a, | z2| <a

and such that, setting

(5.7) P = (a2 - 5V4)1'2 (i.e., 5/2 = (a2 - p2)1'2),

we have

(5.8) r<p.

This is clearly possible by (5.4) and (5.5). We move the segment (zi, z2)

parallel to itself in the direction given by the normal from z = 0 to the line
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containing (zi, z2) until one end point lies on \z\ =a. Then (in case the second

end point is still inside \z\ =a) we rotate the segment about the first endpoint

so as to bring also the second endpoint onto | z\ =a (and we choose the smaller

of the two possible rotations accomplishing this). In other words, we moved

the segment (zi, z2) in such a way that it became a chord in \z\ =a and it is

obvious that during this motion the distance of each point from z = 0 in-

creased. The distance of this chord from the origin is p. If we denote the

length coordinate of the chord, measured from its centre, by s( — (a2— p2)1'2

^s^(a2 — p2)1'2), then the distance of the point with the coordinate 5 from

z=0 will be (p2+52)1'2.

We define now yx(s) on the chord by giving that function the same values

which y(z) took at the corresponding points of the segment (zi, Z2); similarly

we define pi(s) by the values of p(z) on (zi, Z2). yi(s) is therefore analytic for

-(a2-p2)1/2^5g(a2-p2)1'2andyi(±(a2-p2)1/2)=0. As ikf(0 is, by the maxi-

mum principle, a nondecreasing function of t, it follows from the above re-

mark about the increasing distances from the origin that

I px(s) I   = M((p2 + s2)1'2), - (a2 - p2)1'2 ^ 5 ^ (a2 - p2)1'2.

(5.6) implies therefore

r  (a'-,V2     dy     2 r  (a*-W
(5.9) —  ds g  I M((P2 + 52)1'2) I yi(s) \2ds.

J _(„'V)W     ds            J -cas-„!>1/s

Our second transformation maps now half the chord, i.e., 0 =s ^ (a1—p2)1'2,

linearly onto the segment p^t^a of the real axis so that s = 0 is carried into

t=p and s = (a2—p2)112 into t = a. Similarly, we map — (a2—p2)1/2 = 5 = 0 onto

— a^t^—p. These transformations are given by

(5.10) t=+p-\----—5 for 0 ^ + 5 ^ (a2 - p2)1'2.
(a2 - p2)1'2

It is easily seen that

(p2 + s2)112 = p + —-P— s        for 0 = + s ^ (a2 - p2)1'2, 0 < p < a,
(a2 - p2)1'2

where the sign of equality holds only for s=0, ±(c2—p2)1/2. By (5.10) this

shows that under this second transformation the distance of each point from

the origin again increases, except for the points 5=0,+ (a2— p2)1'2 whose dis-

tance remains constant.

The function Y(t) defined by

Y(t) = Y[±p + —-—-— s) = yx(s)
\ (a2- p2)1'2   /

will thus have the following properties:  Y(t) is analytic on the segments
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— a^t^—p and p^t^a; Yia) = F(—a) =0; 7(0 and all its derivatives take

the same values at t =p and / = —p. Defining

(5.11) Mit) = Mi-t) for - 1 < * < 0,

and observing that the distances from the origin do not decrease under this

second transformation, we obtain from (5.9)

/•-el dY 2 ra\dY2        a + p[r~p i i
I       -   dl+ I     - dig--<  j      Mit)\Yit)\2dl

J —a I dt J p  I dt a — p \J _„

+ faMit)\Yit)\*dX.

We use now the inequality

1 a - p 2
(5.13)        -<->        0<pg*£a<l, p<a,

1 - /2     a + p (a - p)2 - (/ - p)2

which will be established at the end of the proof. By our assumption (5.2),

and in view of (5.8) and (5.11), it follows now that

1
Mit) ^- for - a < t ^ - p and p ^ I ^ a.

1-t2

The last three inequalities (and (5.11)) yield

/-p\ dY 2 ra\ dY 2 r ~"      , Ca       ,        i
—  dt + |     —   dt < I     *(0 | F(/) |2cf/ + I    |(0 | 7(0 \2dt,

-a  I   dt J p   \    dt J -a J p

where

2
g(0 =- for p ^ + t ^ a.

(a- p)2 -it + p)2

By assumption y(z) was a nontrivial solution of (1.1) and therefore 7(0^0.

Moreover, we may exclude the trivial case Mit) =0 (i.e., p{z) =0) and we are

therefore by (5.13) justified in excluding the equality sign in (5.14).

The third transformation translates the two segments { — a, — p) and

(p, a) of the real axis until they meet at the origin, i.e., we introduce the

variable x by

x — t + p for p| +/S«,

With the notation

a — p = b,

it follows that * varies between —b and b. Defining now giix) =gi(/Tp) =git),

we have
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2
SM = —-~> - b ^ x ^b.

o2 — x2

Similarly, we define Yi(x) = Yi(t+p) = Y(t) and it follows that Yi(x) is analyt-

ic for — b^x^b and Fi(±i) =0. (5.14) transforms therefore into

r"\dYi2 rb   \Yi(x)\2
(5.15) -  dx<2\       '     W '  rf».

J-Jdx J_6   62 - a;2

We now use the integral inequality

- g        u'Hx, u = «(*),
-b   b2 — X2       J _!,

which holds for continuously differentiable real functions u(x) having at

x= +b zeros of the first order(6). (5.16) follows from the semi-definiteness of

the integral

/h / 2xu \2

Expanding and integrating by parts, we obtain

/»                     xu2     l            rb  Q>2 + *2)«2               rh        x2u2
u'Hx + 2-      - 2-— dx + 4 I      -<fc ^ 0.

.*                 b2- x2 _„        J_*    (62 - *2)2               J_t (b2 - x2)2

u being 0(b — x) and 0(b-\-x) and »; = & and x= — b respectively, the integrals

exist and the integrated part vanishes, which proves (5.16). Writing now

Yi(x) =u(x)+iv(x) and applying (5.16) to both u(x) and v(x), we obtain the

desired contradiction to (5.15).

It remains to prove the inequality

1 a - p 2
(5.13)        -<-,        0<p^t^a<l,P<a.

l-l2     a + p (a - p)2 - (t - p)2

For a=t the right-hand side becomes infinite so that we may assume 0<p

St<a<l. Since

1               1
-<-
1 - t2     a2- t2

it will suffice to show that

(5 17) 1      <_2(q - p)_= 2(a - p)

a2~t2~ (a + p)[(a-p)2-(l-p)2)      (a + P)(a + t - 2p)(a - t)'

i.e., that

(•) See Hardy, Littlewood, P61ya [2, p. 193].
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1     ^ 2(g - p)

o + * = ia + P)ia + t- 2p)

This inequality is equivalent to (a+p)(a+< —2p) ^2(a—p)(a+0, which by

computing the products and rearrangement of terms reduces to

(a - p)2 + p2 + ap + at - 3pl ^ 0.

To prove the last inequality it will be enough to show that, for fixed p and a

(0<p<a<l) and for all t, p^t^a, the function

fit) = p2 + ap + at — 3pt

is positive. However, fit) is positive at the endpoints of the interval (p, c)

and, being a linear function of /, also positive inside the interval. Thus (5.17)

is proved and the inequality (5.13) is established. This completes the proof

of Theorem 5.

We remark that without any modification our proof holds also in the case

r=0. Assumption (5.2) becomes then

Mit) | 1/(1 - t2) for 0 £ t < 1,

and the conclusion is now that no solution yiz) of (1.1) has more than one

zero in |z| <1. But this is clearly a consequence of the sufficiency part of

Theorem I of [6] and also of a criterion announced by Pokornyi [10], stating

that

(5.18) Mit) ^ 2/(1 - t2) for 0 £ / < 1,

is sufficient to ensure the same conclusion. This criterion is sharp, i.e., the

constant 2 cannot be increased.

However, we show now that, similar to the theorems on the non-Euclidean

distance, Theorem 5 is of the "correct order" for r—»1. In view of the geometri-

cal meaning of d and r (length of chord and its distance from the origin) it

seems natural not to change definition (5.4). We have then the following

statement:

No condition of the form

(5.19) M it) | C/(l - t2)\        X > 1, C> 0, r £ * < 1,

is, for all r (0 ^r < 1), sufficient to ensure that

(5.3) |*i-*i|  ^d.

Here

(5.4) d = 2(1 - r2)1'2,

and z\, z2 are again any pair of zeros of an arbitrary solution of (1.1).

To prove this consider
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p(z) =■ d, Ci > C.

The distance d' between neighboring zeros of any solution of (1.1) is then

d> = x/c!/2.

Condition (5.19) holds now for r ^t < 1, where r is given by

(1 - r2)> = C/Cx.

The bound d, given by (5.4), becomes

d = 2(1 - r2)1'2 = 2(C/Cx)ll2\

As X> 1, the lower bound d would, for large G, be larger than the actual dis-

tance d' and we have proved the above statement.

We mentioned that for r = 0, condition (5.18) is sharp. It follows that in

Theorem 5 condition (5.2) cannot be replaced by a condition of the form

M(t) =■ C/(l - /2), rgKl,0gr<l,

with C>2. Recently P. R. Beesack (in a forthcoming Washington University

thesis) has shown that the conclusion indeed holds with C = 2.

6. Euclidean distance II.

Theorem 6. Let p(z) be regular and bounded for \z\ <1, and set M(x)

= Maxi,|_x \p(z)\ (0gx<l); let M(l) =limI.i M(x). For given d, 0<d^2,

let

(6.1) r=(l-rf2/4)1'2

and define Md(x) for —d/2 <x <d/2 as follows:

In Case I: 0<d£21'2,

Md(x) = M(\) fori - r = x < d/2,

(6.2') Mi(x) = M(x + r) for 0 ^ x < 1 - r,

Md(x) = Md(-x) for - d/2 < x < 0.

In Casell: 21'2<d^2,

Md(x) = M(\) for 1 - (2"2 - d/2) g x < d/2,

(6.2")    Md(x) = M(x + 21'2 - d/2) forO ^ x<l - (21'2 - d/2),

Md(x) = Md(-x) for - d/2 < x < 0.

Assume that the differential equation

(6.3) y"(x) + Md(x)y(x) = 0

has a (real) solution y(x) such that y(x)y*Q for —d/2<x<d/2. Then, in case

d = 2,no (nontrivial) solution y(z) of (1.1) has two zeros in \z\ < 1, while in case
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0<d<2, (5.3) holds. Zi, ztare again any pair of zeros in \z\ <1 of an arbitrary

nontrivial solution y(z) of (1.1).

Proof. (6.1) is equivalent to (5.4); the connection between d and r has the

same geometrical meaning as in Theorem 5. We remark that for 0<<2|2

d d
— + r = —+(1- cP/4)1'2 | 21'2,
2 2

with equality only for d — r=2ll2/2. Therefore

r g 21'2 - d/2,

and it follows that Md(x) in Case II, defined by (6.2"), is not smaller than if

it were also defined in this case by (6.2').

We suppose that for a fixed value of the parameter d the assumption of

the theorem holds and that there exists a nontrivial solution y(z) of (1.1)

such that y(zi) =y(zt) =0, Zij^Zi, |zi| <1, |z2| <1, and such that (5.5) holds.

Using the Green's transform along the segment (zi, Zi) we obtain (5.6). We

shall reach the desired contradiction again by three consecutive transforma-

tions of (5.6).

The first transformation is identical to the first transformation used in

the last proof. We use the same notation as before and go through the same

steps. The only modification is that we choose now a so near to 1 that, in addi-

tion to all the former requirements, we have now also

(6.4) p + 5/2>l,

where p is again defined by (5.7). Except for a slight change in notation, our

result was as follows: On the chord (in |z| =a, of length S and of distance p

from the origin) there exists a nontrivial analytic function yi(5), — 5/2|s

15/2, such that yi( ± 5/2) =0 and such that

rin\dyi2 r"* ,
(6.5) I       \-f-  <fo .£. I      Mi(p? + St)1'*) [ yiis) \2ds.

J -m I ds J -i/i

The second transformation displaces now half the chord, i.e., 0^5^5/2,

so that it coincides with the segment p ^t Sp + 5/2 on the real axis. Similarly,

we transform —5/2^5^0 into — (p + 5/2) £*£ — p. These transformations

are given by t = ±p+s, and it is obvious that the distance of each point

from the origin increases, except for the point s=Q whose distance remains

constant. Defining now 7(0 = 7(±p-f-s) =yi(s), we obtain a function 7(0

analytic on the segments — (p+5/2) S*l —P and pK^p + 5/2, such that

7(±(p+5/2)) =0 and Yip) = Yi~p). Setting Mit) =M(1) for 1 <tgp+5/2
(see (6.4)) and extending Mit) by symmetry to negative values of t, we obtain

from (6.5)
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-   dt + I           -   dt <    j            Jf(/) | 7(0 \2dt
-(p+J/2)      * J P dt J_(p+8/2)

(6.6)

+ I 3f(0 | Y(t) \Ht.

The proper inequality sign is justified by the remark following (5.14).

The third transformation is similar to the third transformation used in

the proof of Theorem 5. We translate the two segments symmetrically to-

wards the origin; however, this time not until they meet. Moreover, we have

to distinguish between the two cases according to the value of d.

Case I. 0<J^21'2.

In this case it follows (by (5.4), (5.5), and (5.7)) that

8/2 + p = 8/2 + (a2 - SV4)1'2 < 5/2 + (1 - 5V4)1'2 < d/2 + (1 - d2/!)1'2

= d/2 + r.

The last inequality follows from the fact that the function d/2 + (l —d2/4)112

is increasing for 0^J^21/2. We have therefore

(6.7) S/2 + P < <*/2 + r.

In this case we displace both segments by r = (1 — d2/4)112, i.e., we introduce

x by x=tTr for p^ ±/^p + 5/2 and define again 7i(x) = Yx(t+r) = Y(t) and

M'(x)=M'(t + r)=M(t) for p-r^±x^p + 8/2-r. By (5.8), p-r>0, and

by (6.7), p+8/2-r<d/2 and it follows by (6.2') that in the two intervals

just considered M'(x) =Md(x).

We now continue the function Yx(x) across the gap —(p—r)<x<p—r

between the two intervals by setting Yi(x) = Yi(p-r) for those x. With the

notation

p + 8/2 - r = b' (0 < b' < d/2),

we see that Yi(x) is continuous in — b'^x^b', analytic there except at the

points x= ±(p — r), and Yi(±b') =0. Using now that dYi/dx^O for —(p — r)

<x<p—r we obtain from (6.6)

/*' I dYi 2 Ch'-  dx< I     Md(x)\ 7i(*)N*.
.j- ] dx              J -V

Case II:21'2<rfg2.

Consider first the Case II0 given by

(6.7) 8/2 + p < d/2 + r.

In this case we proceed exactly as under Case I. We therefore arrive again

at the inequality (6.8') where, however, Md(x) is defined by (6.2') instead of

by (6.2") (as it should be in Case II). But using now the remark made at the
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beginning of this proof, it follows that, in Case II0, (6.8') holds with the proper

definition of Mdix).

The case

5/2 + p = d/2 + r

may be excluded, by slightly changing a, and there remains therefore only the

Case Us,

(6.9) 5/2 + p > d/2 + r.

In this case we choose e>0 such that

t <d/2 - 5/2

and

p + 5/2 + e < 21'2.

We translate now both segments by T=p + 5/2— d/2 + e, where by (6.9) and

the last inequality

(6.10) 0 < t < 21'2 - d/2.

In other words, we transform by x=t + T the segments p = +t^p + 8/2 into

the segments d/2 — S/2 — e^±x^d/2 — e and define there  7i(x) = 7i(/+t)

= 7(0, M"ix)=M"it + r)=Mit). By (6.2") and (6.10) it follows that
M"ix)^Mdix). Defining again 7i(*) = 7i(<f/2-5/2-e) for - (d/2 -6/2 -e)
<x<(ci/2-5/2-e) and calling

d/2 - e = b" (0 < b" < d/2),

it follows that 7i(x) is continuous and piecewise analytic in —b"^x^b",

Yii±b") =0 and

rh" \dYi2       rh"
(6.8") I        -  dx< j      Maix) | Yiix) \2dx.

J -b" I dx J -b"

We reached in each case the same conclusion. There exists a complex func-

tion Yiix) which is continuous and piecewise analytic in —b^x^b (0<£

<d/2), which vanishes at the endpoints of this interval and for which

/& I d Yi 2 rh
\—-  dx< I    Mdix)\ 7i(*)|2ci*.

-b\ dx J-b

(6.8) will lead to the desired contradiction to our assumption(7). Indeed, let

X be the lowest eigenvalue of the differential system

y"ix) + \Mdix)yix) - 0, y(6) = y(-i) = 0.

(') See Nehari [8].
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It follows by the minimum property of this eigenvalue that for any real func-

tion u(x), which is continuous and piecewise smooth in — b^x^b and which

vanishes at x = ±b,

(6.11) f   Md(x)u(x)2dx g — f   u'2dx.
J — b X J —b

Splitting now Yx(x) into its real and imaginary part, we obtain by (6.8) and

(6.11) that

rb \dYx2           1   rb \dYx 2
I      -   dx < — f      -   dx,

J _* I dx X J _& | dx

i.e., thatX<l. By the Sturm comparison theorem it follows that the solution

y(x) of equation (6.3) for which y( — b) =0 has another zero in — b<x<b. But

as —d/2<—b<b<d/2 this contradicts, by the Sturm separation theorem,

our assumption. Theorem 6 is therefore established.

Let now M(l) = C>0. As the solution y = cos CU2x of the differential equa-

tion y"(x) + Cy(x)=0 is 5*0 for —ir/2C1'2<x<ir/2C112, it follows from the

Sturm comparison theorem that the assumption of Theorem 6 is satisfied for

d = M'm (tt/C112, 2). The case p(z) = C shows that this application is sharp

(see [6, Corollary]).

7. ra-valent functions. We shall now apply the theorems on the Euclidean

distance to obtain an upper bound ra for the number of zeros of any solution

y(z) of (1.1) in the unit circle. This will be equivalent to ensuring that the

corresponding meromorphic functions of the restricted class are at most

ra-valent in the unit circle.

Our theorems gave us a lower bound d for the distance between two zeros

of any solution y(z). We are therefore led to consider the following—purely

geometrical—magnitude:

(7.1) dn = \. u. b. (       Min       | z„ - z, | Y ra S 2,
\ftfty, /i,F«l- • -n /

where all the points z,, are in the open unit circle E and where the least upper

bound is taken with respect to all sets of ra points Z\, • • » , z„ in E. dn is clearly

a nonincreasing function of ra. If we know that the above-mentioned d is

larger than a certain dnn+x, then every solution y(z) will have at most «o zeros

in E.
Clearly, dz = 2, and for 3 ^ ra ̂  6 it is easily seen that dn is equal to the side

of the corresponding regular polygon inscribed in |z| — 1. dT=dt = l, as can

be seen by putting the seventh point into the origin. For ra^8 the evaluation

of dn seems to require a separate argument for every ra. However, for our

purposes an upper bound for d„ will suffice and it is such an upper bound (for

ra=^8) which we shall now obtain. We first prove
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Lemma 2. For every w— 1, there exists a covering of the unit circle by bim)

circles of diameter i/3m; here

(7.2) bim) = 3m2 +; 3m + 1.

Proof. Circumscribe a regular hexagon H (of side length Ji = 2/31/2) about

the unit circle. Let Lm be the lattice of equilateral triangles of side length

sm=Si/m — 2/m3112, such that the origin is a point of Lm and such that the

sides of the equilateral triangles are parallel to the sides of 77. The number

bim) of lattice points inside or on H is then given by (7.2). We describe about

each of these bim) points a circle of radius sm3lli/3=:2/3m. These circles—

going through the centers of the equilateral triangles—cover the unit circle.

It follows that given any set of &(wi) + l points in the unit circle, at least

two of these points belong to the same circle of diameter 4/3w. From (7.2)

we conclude that if

(7.3) 3m2 + 3m + 2 | n g 3m2 + 9m + 7, m = 1,

then dn = 4/3w. Since

3m2 + 9m + 7 < (mi1'.1 + 71'2)2, m £ 1,

we obtain, for n and m connected by (7.3),

4(m31'2 + 71'2) 1 4(3)1'2 / 71'2 A   1
(7.4) <f„ = -- -<-^-— (1 +-)-

3m w31'2 + 7J/2 3     \       m31'2/nlii

In view of «1/2<w31/2 + 71/2, (7.4) yields the inequality

4(3)1/2/ 71/2     ^

dn < ~Lj!—[ 1 +-),
3wi/2  \        wi/2_ 71/2/'

or

4(3) >'* 1
(7.5) ti„<^-

3      n1'2 - 71'2

(7.5) holds (by (7.3)) for all n = 8. This bound should however only be applied

for n = 25, as the right-hand side of (7.5) for n = 24 is still larger than 1 and we

saw before that dj = 1.

Theorem 5 and the bound (7.5) give now

Corollary 2. Let /(z) be a meromorphic function of the restricted class in

\z\ <1, such that

I {/(«),*} I  £--j-r- for r£ |s|  <l,0<r<l,
1 — I z |2

and let n be the integral part of
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(-+ 71/2) .

\3l'2(l - r2)1'2 /

Then f(z) is at most n-valent in \z\ <1.

Proof. By the remarks at the beginning of this section, we have to show

that

d > dn+x-

By (5.4) and (7.5) this will hold if

4(3)1'2 1
2(1 - r2)1'2 ^ —-

3        (ra+1)1'2-?1'2

However, this inequality is equivalent to

» + 1 £ (-1- 71'2^ ,
\31'2(1 - r2)1'2 /

and we have therefore proved the corollary.

Similarly we may apply (7.5) in connection with Theorem 6 or with the

corollary of [6], mentioned at the end of the last section. This last case is

also contained implicitly in a theorem due to Choy Tak Taam [11, Theorem

2]-
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