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Abstract. Simple sketches from the book O. Lehto, Univalent functions and
Teichmuller spaces.
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1. Quasiconformal mappings

1.1. Conformal invariants.

1.1.1. Hyperbolic metric [p.5-6]. The Poincaré density of a simply connected do-
main A ( C is

ηA(z) =
|f ′(z)|

1− |f(z)|2
,

where f is any conformal mapping f : A→ D.
The value ηA(z) does not depend on f : A → D, because of the following

reasoning. Let g : A → D be conformal. Then g = f ◦ T , where T : D → D
satisfies by the Schwarz-Pick lemma

|T ′(z)| = 1− |T (z)|2

1− |z|2
.

Hence
|g′(z)|

1− |g(z)|2
=
|f ′(T (z))||T ′(z)|
1− |f(T (z))|2

=
|f ′(z)|

1− |f(z)|2
.

Hence, in particular,
ηA(z) = |h′(z)|,

where h : A→ D is chosen to satisfy h(0) = 0.
Let z ∈ A1 ⊂ A and let f : A → D, f1 : A1 → D be conformal such that

f(z) = f1(z) = 0. Let g = f−1
1 . Now h = f ◦ g : D → D satisfies h(0) = 0 and

thus, by the Schwarz lemma,

|h′(0)| = |f ′(g(0))||g′(0)| = |f
′(z)|
|f ′1(0)|

≤ 1,

and hence
ηA(z) = |f ′(z)| ≤ |f ′1(0)| = ηA1(z).

Hence
A1 ⊂ A implies ηA(z) ≤ ηA1(z), z ∈ A1.

Let f : A→ D be conformal, a ∈ A, f(a) = 0 and

g(z) = f(a+ d(z, ∂A)z).

Now g : D→ D with g(0) = 0 satisfies

|g′(0)| = |f ′(a)|d(a, ∂A) ≤ 1

implying

ηA(a) = |f ′(a)| ≤ 1

d(a, ∂A)
.

Moreover, let g : D→ A be conformal with g(0) = z. Define

h(w) =
g(w)− z
g′(0)

.

Now h is univalent, h(0) = 0, h′(0) = 1 and the Koebe one-quater theorem tells
that

|h(w)| = |g(w)− z|
|g′(0)|

= |g(w)− z|ηA(z) ≥ 1

4
, w ∈ ∂D.
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Hence

inf |g(w)− z| = d(z, ∂A)ηA(z) ≥ 1

4
implying

ηA(z) ≤ 1

4d(z, ∂A)
.

Let A ( C be simply connected. Then

ηA(z) ≥ |a− b|
4|z − a||z − b

, a, b /∈ A.

To see this, let f(z) = (z − a)/(z − b), so that f : A → A′ with 0,∞ /∈ A′. Let
g : A′ → D such that g(f(z)) = 0. Now h = g ◦ f : A→ D satisfies h(z) = 0 and
hence

ηA(z) = |h′(z)| = |g′(f(z))||f ′(z)| = ηA′(f(z))|f ′(z)| ≥ 1

4d(f(z), ∂A′)
· |a− b|
|z − b|2

.

Since 0 /∈ A′, we have d(f(z), ∂A′) ≤ |f(z)|, and the assertion follows.

pages 5-6 done

1.1.2. Module of a Quadrilateral. Let (X,TX) and (Y, TY ) be topological spaces.
Then f : X → Y is a homeomorphism if the following conditions hold:

(i) h is a bijection;
(ii) h is continuous;

(iii) h−1 is continuous, that is, h is open.

A Jordan curve is the image of a circle under a homeomorphism of the plane.
A domain whose boundary is a Jordan curve is called a Jordan domain.

A domain A ⊂ C is locally connected at z ∈ A, if every neighborhood U of z
contains a neighborhood V of z such that V ∩ A is connected.

Let f : D → A be conformal. If A is locally connected, then there exists
homeomorphism F : D → A, F |A = f . In particular, ∂A is a Jordan curve.

Hence a domain A ⊂ C is a Jordan domain if and only if its boundary is locally
connected.

Hence, a conformal mapping of a Jordan domain onto another Jordan domain
has a homeomorphic extension to the boundary, and hence to the whole plane.
For such a mapping, the images of three boundary points can, modulo orientation,
be prescribed arbitrarily on the boundary of the image domain.

In contrast, four points on the boundary of a Jordan domain determine a con-
formal module.

Denote by Q(z1, z2, z3, z4) a quadrilateral with vertices z1, z2, z3, z4 following
each other in this order in ∂Q. The arcs (z1, z2), (z2, z3), (z3, z4), (z4, z1) are called
the sides of the quadrilateral.

Each quadrilateral Q can be mapped conformally to an euclidean rectangle R:
first map Q conformally to H = {z ∈ C : Im(z) > 0}.
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Then map H to itself such that the points zj end up in pairwise symmetric
position about the origin. Then apply a suitable elliptic integral.

Let f : Q(z1, z2, z3, z4)→ [0, a]× [0, b] ⊂ C be conformal such that f([z1, z2]) =
[0, a]. The number a/b which does not depend on the particular choice of the
canonical rectangle, is called the conformal module of the quadrilateralQ(z1, z2, z3, z4),
and denoted by

M(Q(z1, z2, z3, z4)) = a/b.

By the definition,

M(Q(z1, z2, z3, z4)) = 1/M(Q(z2, z3, z4, z1))

.
Also, by the definition, if Q ⊂ A and f : A→ C is conformal, then

M(Q(z1, z2, z3, z4)) = M(f(Q)(f(z1), f(z2), f(z3), f(z4))).

1.1.3. Lenght-Area Method. Let Q = Q(z1, z2, z3, z4) and f : Q → [0, a] × [0, b] ⊂
C. Then ∫

Q

|f ′(z)|2 dm(z) = ab.

Let Γ be a family of locally rectifiable Jordan arcs in Q which join the sides (z1, z2)
and (z3, z4). Then ∫

γ

|f ′(z)||dz| ≥ b, γ ∈ Γ,

with equality if γ = f−1({(x, t) : 0 ≤ t ≤ b}) for some x ∈ [0, a]. Hence

M(Q) =

∫
Q
|f ′(z)|2 dm(z)(

infγ∈Γ

∫
γ
|f ′(z)||dz|

)2 .

Let P be a set of non-negative Borel-measurable functions ρ in Q that satisfy∫
γ

ρ(z)|dz| ≥ 1, γ ∈ Γ.

With the notation

mρ(Q) =

∫
Q

ρ2(z) dm(z),

we have

M(Q) = inf
ρ∈P

mρ(Q).

Namely, let

ρ1(z) =
ρ(f−1(z))

|f ′(z)|
, z ∈ R,

so that

ρ1(f(z))|f ′(z)| = ρ(z), z ∈ Q.

1.1.4. Rengel’s inequality (?)
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1.1.5. Module of a ring domain. A doubly connected B ( Ĉ is called a ring
domain. The domain B can be mapped to an annulus

(i) 0 < |z| <∞;
(ii) 1 < |z| <∞;

(iii) 1 < |z| < R, R ∈ (1,∞).

In cases (i)-(ii), the module M(B) =∞ and in case (iii) we set

M(B) = logR.

Let Γ be the family of all rectifiable Jordan curves in a ring domain B, which
separate the boundary components of B. Let P be as before. Now

M(B) = 2π inf
ρ∈P

mρ(B).

Applications:
(i) Let B be a ring domain which separates the points a1, b1 from the points a2, b2.
If

σ(aj, bj) ≥ δ, j = 1, 2,

where σ is the spherical distance, then

M(B) ≤ π2

2δ2
.

(ii) Let B be a ring domain whose boundary components A1, A2 have spherical
diameters > δ and a mutual distance < ε < δ, that is,

σ(A1, A2) < ε < δ < diam(Aj), j = 1, 2.

Then

M(B) ≤ π2

log tan(δ/2)
tan(ε/2)

.

Jensen’s inequality. If the measure space (Ω,Σ, µ) satisfies µ(Ω) = 1, then

ϕ

(∫
Ω

g(z) dµ(z)

)
≤
∫

Ω

ϕ(g(z)) dµ(z),

for all g : Ω→ [0, 1), ϕ : [0,∞] convex. Namely, let

x0 =

∫
Ω

g(z) dµ(z).

There exists a, b ∈ R such that

ax+ b ≤ ϕ(x); ax0 + b = ϕ(x0).

Hence ∫
Ω

ϕ(g(z)) dµ(z) ≥ a

∫
Ω

g(z) dµ(z) + b

∫
Ω

dµ(z)

= ax0 + b = ϕ(x0)

= ϕ

(∫
Ω

g(z) dµ(z)

)
.

(1.1.1)



6 JUHA-MATTI HUUSKO

We see that(∫ a

0

f(x) dx

)2

=

(∫ 1

0

f(ay) bdy

)2

= a2

(∫ 1

0

f(ay) dy

)2

.

By Jensen’s inequality

a2

(∫ 1

0

f(ay) dy

)2

≤ a2

∫ 1

0

f(ay)2 dy = a

∫ 1

0

f(x)2 dx,

and we conclude (∫ a

0

f(x) dx

)2

≤ a

∫ 1

0

f(x)2 dx.

Therefore

mρ(Q) =

∫ a

0

∫ b

0

ρ1(x, y)2 dxdy ≥ 1

b

∫ a

0

dx

(∫ b

0

ρ1(x, y) dy

)2

1.1.6. Module of a path family.

1.2. Geometric Definition of Quasiconformal Mappings.

1.2.1. Definitions of Quasiconformality. A sense-preserving homeomorphism f :
A→ A′ is K-quasiconformal, if its maximal dilatation is bounded:

sup
Q

M(f(Q))

M(Q)
≤ K.

Here M(Q) is the module of the quadrilateral Q = Q(z1, z2, z3, z4) and

f(Q) = f(Q)(f(z1), f(z2), f(z3), f(z4))

is the image quadrilateral.
The maximal dilatation is always atleast 1, because the modules ofQ(z1, z2, z3, z4)

and Q(z2, z3, z4, z1) are reciprocals.
The maximal dilatation is 1 if and only if f is conformal. If f isK-quasiconformal,

then M(f(Q)) ≥M(Q)/K for every quadrilateral in A. A mapping f and its in-
verse f−1 are simultaneously K-quasiconformal.

If f : A→ B is K1-qc and g : B → C is K1-qc, then g ◦ f is K1K2-qc.
The map f is K-quasiconformal iff

M(f(B)) ≤ KM(B)

for all ring domains B ⊂ A; actually iff

M(f(Γ)) ≤ KM(Γ)

for every path family Γ of A.
If B = A \ {a} and f : B → B′ is K-quasiconformal, then f can be extended

to F : A→ A′ quasiconformal.
If f : D → D′ is quasiconformal and D,D′ are Jordan domains, then f can be

extended to F : D → D′ homeomorphic.
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1.2.2. Normal Families of Quasiconformal Mappings. A family F : {F : A→ C}
is normal if every sequence contains a subsequence, which is locally uniformly
convergent in A. If∞ ∈ A, the convergence is studied under the spherical metric,
defined as

σ(z, w) =
|z − w|√

1 + |z|2
√

1 + |w|2
, σ(z,∞) =

1√
1 + |z|2

.

If ∞ /∈ A, then dE and σ are equivalent.
A family F : {F : A→ C} is equicontinuous at x0 ∈ A, if for every ε > 0, there

exists δ = δ(x0) > 0 independent of F ∈ F such that

σ(F (x), F (x0)) < ε, σ(x, x0) < δ, F ∈ F .
The family is equicontinuous if it is equicontinuous at every point of A.

If a family is equicontinuous, then it is normal.

Lemma 1. Let F be a family of K-quasiconformal mappings of a domain A.

If every f ∈ F omits two values a, b ∈ Ĉ such that σa, b ≥ d > 0, then F is
equicontinuous in A.

Theorem 2. asd

1.3. Beltrami Differential Equation.

1.3.1. Complex dilatation. Let f : A → A′ be a K-quasiconformal mapping dif-
ferentiable at z ∈ A. Since

max
α
|∂αf | = |∂f |+ abs∂f |, min

α
|∂αf | = |∂f | − abs∂f |

the dilatation condition

max
α
| ≤ K min

α
(a+ b = K(a− b))

is equivalent to ∣∣∂f ∣∣ ≤ K − 1

K + 1
|∂f | (b(K + 1) = (K − 1)a)

If Jf (z) > 0, then ∂f(z) 6= 0 and we can write

µ(z) =
partialf(z)

∂f(z)
.

The function µ is the complex dilatation of f - Since f is continuous, µ is a Borel-
measurable function and

|µ(z)| ≤ K − 1

K + 1
< 1.

In a point a ∈ A, where µ(z) is defined, the mapping

z 7→ f(a) + ∂f(a)(z − a) + ∂f(z)(z − a)

is a non-degenerate affine transformation which maps circles centered at z onto
ellipses centered at f(z). The ratio of the major axis to the minor axis of the
image ellipses is equal to

1 + |µ(z)|
1− |µ(z)|

.
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We see that the smaller |µ(z)| is, the less the mapping f deviates from a conformal
mapping at the point z. If µ(z) 6= 0, then the argument of µ(z) determines
the direction of maximal stretching: |∂αf(z)| assumes its maximum when α =
arg µ(z)/2.

1.3.2. Quasiconformal Mappings and the Beltrami Equation.

Lemma 3. Let f ∈M(D) satisfy f ′′(0) = 0, ‖S(f)‖D ≤ 2 and

|S(f)(z)|(1− |z|2)2 ≤ 1, |z| ≤ a < 1.

Then f ∈ H(D) and

|f ′(z)| ≤ M |f ′(0)|
1− |z|2

(
log

1 + |z|
1− |z|

)−2

,

where M = M(a) is a constant.

2. Univalent Functions

2.1. Schwarzian derivative [p.51→].

2.1.1. Definition and Transformation Rules. Let

f(z) =
az + b

cz + d
.

Then

f ′(z) =
ad− bc

(cz + d)2
;

f ′′(z)

f ′(z)
=
−2c

cz + d
;

(
f ′′

f ′

)′
(z) =

2c2

(cz + d)2

and we see that

S(f) =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

≡ 0.

On the other hand, led S(f) ≡ 0. For y = f ′′/f ′, we have y′ = y2/2. By a
simple integration we see that f is a Möbius transformation.
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