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Abstract

This research concerns coefficient conditions for linear differential
equations in the unit disc of the complex plane. In the higher order
case the separation of zeros (of maximal multiplicity) of solutions is
considered, while in the second order case slowly growing solutions
in H∞, BMOA and the Bloch space are discussed. A counterpart
of the Hardy-Stein-Spencer formula for higher derivatives is proved,
and then applied to study solutions in the Hardy spaces.

Separation of zeros

A fundamental question in the study of complex linear differential equa-
tions with analytic coefficients in a complex domain is to relate the growth
of coefficients to the growth of solutions and to the distribution of their ze-
ros. In the case of fast growing solutions, Nevanlinna and Wiman-Valiron
theories have turned out to be very useful both in the unit disc [3, 11] and
in the complex plane [10, 11].

In addition to methods above, theory of conformal maps has been used
to establish interrelationships between the growth of coefficients and the
geometric distribution (and separation) of zeros of solutions. In the setting
of differential equations, Nehari’s theorem [12, Theorem I] admits the
following (equivalent) formulation: if A is analytic in D and

sup
z∈D

|A(z)|(1− |z|2)2 (1)

is at most one, then each non-trivial solution of

f ′′ + Af = 0 (2)

has at most one zero in D. Few years later, Schwarz showed [16, Theo-
rems 3–4] that if A is analytic in D then zero-sequences of all non-trivial
solutions of (2) are separated in the hyperbolic metric if and only if (1) is
finite.

The sequence {zn}
∞
n=1 ⊂ D is said to be separated in the hyperbolic

metric if there exists a constant δ > 0 such that |zn−zk|/|1−znzk| > δ
for any n 6= k. Moreover, the sequence {zn}

∞
n=1 ⊂ D is called uniformly

separated if

inf
k∈N

∏

n∈N\{k}

∣

∣

∣

∣

zn − zk
1− znzk

∣

∣

∣

∣

> 0.

We consider the zero distribution of non-trivial solutions of the linear
differential equation

f ′′′ + A2f
′′ + A1f

′ + A0f = 0 (3)

with analytic coefficients. Note that zeros of non-trivial solutions of (3)
are at most two-fold. Let ϕa(z) = (a− z)/(1−az), for a, z ∈ D, denote
an automorphism of D which coincides with its own inverse.

The proof of the following theorem bears similarity to that of [5, Theo-
rem 1].

Theorem 1 Let f be a non-trivial solution of (3) where
A0, A1, A2 ∈ H(D).

(i) If
sup
z∈D

|Aj(z)|(1− |z|2)3−j < ∞,

for j = 0, 1, 2, then the sequence of two-fold zeros of f is a
finite union of separated sequences.

(ii) If

sup
a∈D

∫

D

|Aj(z)|(1− |z|2)1−j(1− |ϕa(z)|
2) dm(z) < ∞,

for j = 0, 1, 2, then the sequence of two-fold zeros of f is a
finite union of uniformly separated sequences.

Figure 1: A union of three separated sequences. Each pseudo-hyperbolic
disc of a fixed sufficiently small radius contains at most one point from
each sequence.

Slowly growing solutions

Nevanlinna and Wiman-Valiron theories are not sufficiently delicate tools
to study slowly growing solutions of (2), and hence different approach
must be employed. An important breakthrough in this regard was [13],
where Pommerenke obtained a sharp sufficient condition for the analytic
coefficient A which places all solutions f of (2) to the classical Hardy
space H2.

Theorem A [13, Theorem 2] Let A be analytic in D. If

sup
a∈D

∫

D

|A(z)|2(1− |z|2)2(1− |ϕa(z)|
2) dm(z) (4)

is sufficiently small, then all solutions f of (2) satisfy f ∈ H2.

Pommerenke’s idea was to use Green’s formula twice to write theH2-norm
of f in terms of f ′′, employ the differential equation (2), and then apply
Carleson’s theorem for the Hardy spaces [2, Theorem 9.3]. The leading
idea of this (operator theoretic) approach has been extended to study, for
example, solutions in the Hardy spaces [15], Dirichlet type spaces [8] and
growth spaces [6, 9], to name a few instances.

The next result is stated in terms of the space K of Cauchy transforms,
which we describe here shortly. LetM be the collection of all (finite) com-
plex Borel measures on ∂D. For µ ∈ M , the total variation measure |µ|
is defined as a set function |µ|(E) = sup

∑

j |µ(Ej)|, where the supre-

mum is taken over all countable partitions
{

Ej
}

of E ⊂ T. Moreover,
‖µ‖ = |µ|(∂D) is the total variation of µ [14, Chapter 6].

The space K consists of those analytic functions in D that are of the form

(Kµ)(z) =

∫

∂D

dµ(ζ)

1− ζz
, z ∈ D,

for some µ ∈ M . For each f ∈ K, the set Mf =
{

µ ∈ M : f = Kµ
}

of measures that represent f produces the norm

‖f‖K = inf
{

‖µ‖ : µ ∈ Mf

}

.

For more details, see [1].

Theorem 2 Let A ∈ H(D). If lim sup
r→1−

sup
z∈D

‖Ar,z‖K < 1 for

Ar,z(u) =

∫ z

0

∫ ζ

0

A(rw)

1− uw
dw dζ, u ∈ D,

then all solutions f of (2) are bounded.

The question converse to Theorem 2 is open and appears to be difficult.
The boundedness of one non-trivial solution of (2) is not enough to guar-
antee that (1) is finite, which can be easily seen by considering the solution
f (z) = exp(−(1 + z)/(1− z)) of (2) for A(z) = −4z/(1− z)4, z ∈ D.
However, if (2) admits linearly independent solutions f1, f2 ∈ H∞ such
that infz∈D

(

|f1(z)| + |f2(z)|
)

> 0, then (1) is finite. This is a con-
sequence of the Corona theorem [2, Theorem 12.1], according to which
there exist g1, g2 ∈ H∞ such that f1g1 + f2g2 ≡ 1, and consequently
A = A + (f1g1 + f2g2)

′′ = 2(f ′1g
′
1 + f ′2g

′
2) + f1g

′′
1 + f2g

′′
2 .

We proceed to consider BMOA, which contains those functions in the
Hardy space H2 whose boundary values are of bounded mean oscillation.
For 0 < p < ∞, the Hardy space Hp consists of functions f analytic in D
such that

‖f‖
p
Hp =

1

2π

∫ ∞

0
|f (reiθ)| dθ < ∞.

The space BMOA is normed by

‖f‖2BMOA = sup
a∈D

‖fa‖
2
H2,

where fa(z) = f (ϕa(z)) − f (a) and ϕa(z) = (a − z)/(1 − az) for
a, z ∈ D. By the Littlewood-Paley identity,

‖f‖2BMOA ≤ 4 sup
a∈D

∫

D

|f ′(z)|2(1− |ϕa(z)|
2) dm(z) ≤ 4 ‖f‖2BMOA,

see [4, pp. 228–230]. Clearly, BMOA is a subspace of the Bloch space B,
which consists of functions f analytic in D such that

sup
z∈D

|f ′(z)|(1− |z|2) < ∞.

The following result should be compared to Theorem A as BMOA is
a conformally invariant subspace of H2.

Theorem 3 Let A ∈ H(D). If

sup
a∈D

(

log
e

1− |a|

)2 ∫

D

|A(z)|2(1− |z|2)2(1− |ϕa(z)|
2) dm(z)

is sufficiently small, then all solutions f of (2) satisfy f ∈ BMOA.

A counterpart of the

Hardy-Stein-Spencer formula

Finally, we turn to consider coefficient conditions which place solutions
of (2) in the Hardy spaces. Our results are inspired by an open question,
which is closely related to the Hardy-Stein-Spencer formula

‖f‖
p
Hp = |f (0)|p +

p2

2

∫

D

|f (z)|p−2|f ′(z)|2 log
1

|z|
dm(z), (5)

that holds for 0 < p < ∞ and f ∈ H(D). For p = 2, (5) is the well-
known Littlewood-Paley identity, while the general case follows from [7,
Theorem 3.1] by integration.

Question 1 Let 0 < p < ∞. If f ∈ H(D), then is it true that

‖f‖
p
Hp ≤ C(p)

∫

D

|f (z)|p−2|f ′′(z)|2(1−|z|2)3 dm(z)+|f (0)|p+|f ′(0)|p,

where C(p) is a positive constant such that C(p) → 0+ as p → 0+?

We obtain the following partial result. Here a . b means that there exists
C > 0 such that a ≤ Cb.

Theorem 4 Let f ∈ H(D), k ∈ N, and denote

c = c(f, p, k) =
k−1
∑

j=0

|f (j)(0)|p, 0 < p < ∞.

(i) If 0 < p ≤ 2, then

‖f‖
p
Hp .

∫

D

|f (z)|p−2|f (k)(z)|2(1− |z|2)2k−1 dm(z) + c.

(ii) If 2 ≤ p < ∞, then

∫

D

|f (z)|p−2|f (k)(z)|2(1− |z|2)2k−1 dm(z) + c . ‖f‖
p
Hp.

The comparison constants are independent of f , but depend on p.

Theorem 4 implies a special case of [15, Theorem 1.7].

Theorem B Let 0 < p ≤ 2 and A ∈ H(D). If

sup
a∈D

∫

D

|A(z)|2(1− |z|2)2(1− |ϕa(z)|
2) dm(z) (6)

is sufficiently small (depending on p), then all solutions f of (2) satisfy
f ∈ Hp.

Remark 1 If Question 1 has an affirmative solution, then Theorem B
would admit the following immediate improvement: if A ∈ H(D) such
that (6) is finite, then any solution f of (2) satisfies f ∈

⋃

0<p<∞Hp.
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