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LINEAR DIFFERENTIAL EQUATIONS WITH
SLOWLY GROWING SOLUTIONS

JANNE GRÖHN, JUHA-MATTI HUUSKO AND JOUNI RÄTTYÄ

Abstract. This research concerns linear differential equations in the unit disc of the
complex plane. In the higher order case the separation of zeros (of maximal multiplicity)
of solutions is considered, while in the second order case slowly growing solutions in H

∞,
BMOA and the Bloch space are discussed. A counterpart of the Hardy-Stein-Spencer
formula for higher derivatives is proved, and then applied to study solutions in the
Hardy spaces.

1. Introduction

A fundamental objective in the study of complex linear differential equations with
analytic coefficients in a complex domain is to relate the growth of coefficients to the
growth of solutions and to the distribution of their zeros. In the case of fast growing
solutions, Nevanlinna and Wiman-Valiron theories have turned out to be very useful
both in the unit disc [10, 24] and in the complex plane [23, 24].

We restrict ourselves to the case of the unit disc D = {z ∈ C : |z| < 1}. In addition to
methods above, theory of conformal maps has been used to establish interrelationships
between the growth of coefficients and the geometric distribution (and separation) of ze-
ros of solutions. This connection was one of the highlights in Nehari’s seminal paper [25],
according to which a sufficient condition for the injectivity of a locally univalent mero-
morphic function can be given in terms of its Schwarzian derivative. In the setting of
differential equations, Nehari’s theorem [25, Theorem I] admits the following (equivalent)
formulation: if A is analytic in D and

sup
z∈D

|A(z)|(1− |z|
2)2 (1.1)

is at most one, then each non-trivial solution (f �≡ 0) of

f
�� +Af = 0 (1.2)

has at most one zero in D. A few years later, in 1955, Schwarz showed [36, Theorems 3–
4] that if A is analytic in D then zero-sequences of all non-trivial solutions of (1.2) are
separated in the hyperbolic metric if and only if (1.1) is finite. The necessary condition,
corresponding to Nehari’s theorem, was given by Kraus [22]. For recent developments
based on localization of the classical results, see [5]. In the case of higher order linear
differential equations

f
(k) +Ak−1f

(k−1) + · · ·+A1f
� +A0f = 0, k ∈ N, (1.3)
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with analytic coefficients A0, . . . , Ak−1, this line of reasoning has not given complete
results. Some progress on the subject was obtained in the seventies and eighties by Kim
and Lavie, among many other authors.

Nevanlinna and Wiman-Valiron theories, in the form they are known today, do not
seem to be sufficiently delicate tools to study slowly growing solutions of (1.2), and hence
different approach must be employed. An important breakthrough in this regard was
[33], where Pommerenke obtained a sharp sufficient condition for the analytic coefficient
A which places all solutions f of (1.2) to the classical Hardy space H

2. Pommerenke’s
idea was to use Green’s formula twice to write the H

2-norm of f in terms of f ��, employ
the differential equation (1.2), and then apply Carleson’s theorem for the Hardy spaces
[8, Theorem 9.3]. Consequently, the coefficient condition was given in terms of Carleson
measures. The leading idea of this (operator theoretic) approach has been extended to
study, for example, solutions in the Hardy and Bergman spaces [28, 35], Dirichlet type
spaces [19] and growth spaces [16, 21], to name a few instances.

Our intention is to establish sufficient conditions for the coefficient of (1.2) which place
all solutions to H

∞, BMOA or to the Bloch space. In principle, Pommerenke’s original
idea could be modified to cover these cases, but in practice, this approach falls short
since either it is difficult to find a useful expression for the norm in terms of the second
derivative (in the case of H∞) or the characterization of Carleson measures is not known
(in the cases of BMOA and Bloch). Concerning Carleson measures for the Bloch space,
see [13]. Curiously enough, the best known coefficient condition placing all solutions of
(1.2) to the Bloch space is obtained by straightforward integration [21]. Our approach
takes advantage of the reproducing formulae, and is different to ones in the literature.

2. Main results

Let H(D) denote the collection of functions analytic in D, and let m be the Lebesgue
area measure, normalized so that m(D) = 1. By postponing the rigorous definitions
to the forthcoming sections, we proceed to outline our results. We begin with the zero
distribution of non-trivial solutions of the linear differential equation

f
��� +A2f

�� +A1f
� +A0f = 0 (2.1)

with analytic coefficients. Note that zeros of non-trivial solutions of (2.1) are at most
two-fold. Let ϕa(z) = (a − z)/(1 − az), for a, z ∈ D, denote a conformal automorphism
of D which coincides with its own inverse.

Theorem 1. Let f be a non-trivial solution of (2.1) where A0, A1, A2 ∈ H(D).
(i) If

sup
z∈D

|Aj(z)|(1− |z|
2)3−j

< ∞, j = 0, 1, 2, (2.2)

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(ii) If

sup
a∈D

�

D
|Aj(z)|(1− |z|

2)1−j
�
1− |ϕa(z)|

2
�
dm(z) < ∞, j = 0, 1, 2, (2.3)

then the sequence of two-fold zeros of f is a finite union of uniformly separated

sequences.

Theorem 1(i) should be compared to the second order case [36, Theorem 3], which
was already mentioned in the introduction. For the second order counterpart of The-
orem 1(ii), see [14, Theorem 1]. By a standard transformation as in [23, p. 74], both
[36, Theorem 3] and [14, Theorem 1] admit immediate generalizations to second order
differential equations (1.3) with an intermediate coefficient A1. The proof of Theorem 1
is presented in Section 3, and it is based on a conformal transformation of (2.1), Jensen’s
formula, and on a sharp growth estimate for solutions of (2.1). Theorem 1 extends to
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the case of higher order differential equations (1.3), but we leave details for the interested
reader.

The following results concern slowly growing solutions of the second order differential
equation (1.2), however, our methods could also be applied in more general situations.
A sufficient condition for the analytic coefficient A, which forces all solutions of (1.2) to
be bounded, is given in terms of Cauchy transforms. The space K of Cauchy transforms
consists of functions in H(D) that take the form

�
T(1 − ζz)−1

dµ(ζ), where µ is a finite,
complex, Borel measure on the unit circle T = ∂D. For more details we refer to Section 5,
where the following theorem is proved.

Theorem 2. Let A ∈ H(D).
(i) If lim sup

r→1−
sup
z∈D

�Ar,z�K < 1 for

Ar,z(u) =

�
z

0

�
ζ

0

A(rw)

1− uw
dw dζ, u ∈ D,

then all solutions of (1.2) are bounded.

(ii) If a primitive of A belongs to the Hardy space H
1
, then all solutions of (1.2) have

their first derivative in H
1
.

For f ∈ H(D), f � ∈ H
1 if and only if f admits a continuous extension to D and is abso-

lutely continuous on T [8, Theorem 3.11]. Therefore, as a consequence of Theorem 2(ii),
we obtain a coefficient condition which places all solutions of (1.2) to the disc algebra.

The question converse to Theorem 2(i) is open and appears to be difficult. The bound-
edness of one non-trivial solution of (1.2) is not enough to guarantee that (1.1) is finite,
which can be easily seen by considering the solution f(z) = exp(−(1 + z)/(1 − z)) of
(1.2) for A(z) = −4z/(1 − z)4, z ∈ D. However, if (1.2) admits linearly independent
solutions f1, f2 ∈ H

∞ such that infz∈D
�
|f1(z)|+ |f2(z)|

�
> 0, then (1.1) is finite. This is

a consequence of the Corona theorem [8, Theorem 12.1], according to which there exist
g1, g2 ∈ H

∞ such that f1g1 + f2g2 ≡ 1, and consequently A = A + (f1g1 + f2g2)�� =
2(f �

1g
�
1 + f

�
2g

�
2) + f1g

��
1 + f2g

��
2 .

We proceed to consider BMOA, which consists of those functions in the Hardy space
H

2 whose boundary values are of bounded mean oscillation. The following result should
be compared to [33, Theorem 2] as BMOA is a conformally invariant subspace of H2.

Theorem 3. Let A ∈ H(D). If

sup
a∈D

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (2.4)

is sufficiently small, then all solutions of (1.2) belong to BMOA.

To the best of our knowledge BMOA solutions of (1.2) have not been discussed in the
literature before. The coefficient condition in Theorem 3 allows solutions of (1.2) to be
unbounded, see Example 2 in Section 6. By [28, Lemma 5.3] or [40, Theorem 1], (2.4) is
comparable to

sup
a∈D

�
log e

1−|a|
�2

1− |a|

�

Sa

|A(z)|2(1− |z|
2)3 dm(z), (2.5)

where Sa = {reiθ : |a| < r < 1, |θ − arg(a)| ≤ (1 − |a|)/2} denotes the Carleson square
with respect to a ∈ D \ {0} and S0 = D. See also [37, Lemma 3.4]. Solutions in VMOA,
the closure of polynomials in BMOA, are discussed in Section 6 in which Theorem 3 is
proved.

The case of the Bloch space B is especially interesting. For 0 < α < ∞, let Lα denote
the collection of those A ∈ H(D) for which

�A�Lα = sup
z∈D

|A(z)|(1− |z|
2)2

�
log

e

1− |z|

�α

< ∞.
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The comparison between H
∞
2 , Lα and the functions for which (2.4) is finite is presented

in Section 4. It is known that, if �A�L1 is sufficiently small, then all solutions of (1.2)
belong to B. This result was recently discovered with the best possible upper bound for
�A�L1 in [21, Corollary 4(b) and Example 5(b)]. Moreover, if A ∈ L1 then all solutions
of (1.2) are in H

2 by [33, Corollary 1]. We point out that, if A ∈ Lα for any 1 < α < ∞,
then all solutions of (1.2) are bounded by [18, Theorem G(a)]. Solutions in the little
Bloch space B0, the closure of polynomials in B, are discussed in Section 7, among other
results involving the Bloch space.

The proof of Theorem 2(i) is based on an application of the reproducing formula for
H

1 functions, and it is natural to ask whether this method extends to the cases of B and
BMOA. In the case of B, by using the reproducing formula for weighted Bergman spaces,
we prove a result (namely, Theorem 10) offering a family of coefficient conditions, which
are given in terms of Bergman spaces induced by doubling weights. The case of BMOA,
with the reproducing formula for H1, is further considered in Section 8.

A careful reader observes that the results above are closely related to operator theory.
If f is a solution of (1.2), then

f(z) = −

�
z

0

��
ζ

0
f(w)A(w) dw

�
dζ + f

�(0)z + f(0), z ∈ D. (2.6)

By denoting

SA(f)(z) =

�
z

0

��
ζ

0
f(w)A(w) dw

�
dζ, z ∈ D,

we obtain an integral operator, induced by the symbol A ∈ H(D), that sends H(D) into
itself. With this approach, the search of sufficient coefficient conditions boils down to
finding sufficient conditions for the boundedness of SA. Therefore, it is not a surprise
that many results on slowly growing solutions are inspired by study of the classical integral
operator

Tg(f)(z) =

�
z

0
f(ζ)g�(ζ) dζ,

see [2, 3, 7, 32, 38]. The strength of the operator theoretic approach is demonstrated
by proving that the coefficient conditions arising from Theorem 10 are essentially inter-
changeable with A ∈ L1, see Theorem 11.

Deep duality relations are implicit in the proofs of Theorems 2(i), 10 and 14. The
dual of H

1 is isomorphic to BMOA with the Cauchy pairing by Fefferman’s theorem
[12, Theorem 7.1], the dual of the disc algebra is isomorphic to the space of Cauchy
transforms with the dual pairing �f,Kµ� =

�
f dµ [6, Theorem 4.2.2], and the dual of

A
1
ω is isomorphic to the Bloch space with the dual pairing �f, g�A2

ω
=

�
D fg ω dm [30,

Corollary 7].
Finally, we turn to consider coefficient conditions which place solutions of (1.2) in the

Hardy spaces. Our results are inspired by an open question, which is closely related to
the Hardy-Stein-Spencer formula

�f�
p

Hp = |f(0)|p +
p
2

2

�

D
|f(z)|p−2

|f
�(z)|2 log

1

|z|
dm(z), (2.7)

that holds for 0 < p < ∞ and f ∈ H(D). For p = 2, (2.7) is the well-known Littlewood-
Paley identity, while the general case follows from [17, Theorem 3.1] by integration.

Question 1. Let 0 < p < ∞. Is it true that

�f�
p

Hp ≤ C(p)

�

D
|f(z)|p−2

|f
��(z)|2(1− |z|

2)3 dm(z) + |f(0)|p + |f
�(0)|p (2.8)

for any f ∈ H(D), where C(p) is a positive constant such that C(p) → 0+ as p → 0+?
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Affirmative answer to this question would have an immediate application to differential
equations, see Section 9.2. In the context of second order differential equation (1.2), it
suffices to consider Question 1 under the additional assumptions that all zeros of f are
simple and f

�� vanishes at zeros of f . The estimate in Question 1 is valid for a non-trivial
subclass of H(D), see Section 9.1.

Function f ∈ H(D) is uniformly locally univalent if there is a constant 0 < δ ≤ 1 such
that f is univalent in each pseudo-hyperbolic disc ∆(z, δ) = {w ∈ D : |ϕz(w)| < δ} for
z ∈ D. A partial solution to Question 1 is given by Theorem 4. Here a � b means that
there exists C > 0 such that a ≤ Cb. Moreover, a � b if and only if a � b and a � b.

Theorem 4. Let f ∈ H(D), and k ∈ N.
(i) If 0 < p ≤ 2, then

�f�
p

Hp �
�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z) +

k−1�

j=0

|f
(j)(0)|p. (2.9)

(ii) If 2 ≤ p < ∞, then

�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z) +

k−1�

j=0

|f
(j)(0)|p � �f�

p

Hp . (2.10)

(iii) If 0 < p < ∞ and f is uniformly locally univalent, then (2.10) holds.

The comparison constants are independent of f ; in (i) and (ii) they depend on p, and

in (iii) it depends on δ (the constant of uniform local univalence) and p.

The proof of Theorem 4 is presented in Section 9, and it takes advantage of a norm
in H

p, given in terms of higher derivatives and area functions, and an estimate of the
non-tangential maximal function.

3. Zero distribution of solutions

For 0 ≤ p < ∞, the growth space H
∞
p consists of those g ∈ H(D) for which

�g�H∞
p

= sup
z∈D

|g(z)|(1− |z|
2)p < ∞.

We writeH∞ = H
∞
0 , for short. The sequence {zn}∞n=1 ⊂ D is called uniformly separated if

inf
k∈N

�

n∈N\{k}

����
zn − zk

1− znzk

���� > 0,

while {zn}
∞
n=1 ⊂ D is said to be separated in the hyperbolic metric if there exists a con-

stant δ > 0 such that |zn−zk|/|1−znzk| > δ for any n �= k. After the proof of Theorem 1,
we present an auxiliary result which provides an estimate for the number of sequences in
the finite union appearing in the claim.

Proof of Theorem 1. (i) If f is a non-trivial solution of (2.1), then g = f ◦ ϕa solves

g
��� +B2g

�� +B1g
� +B0g = 0, (3.1)

where

B0 = (A0 ◦ ϕa)(ϕ
�
a)

3
, B2 = (A2 ◦ ϕa)ϕ

�
a − 3

ϕ
��
a

ϕ�
a

,

B1 = (A1 ◦ ϕa)(ϕ
�
a)

2
− (A2 ◦ ϕa)ϕ

��
a + 3

�
ϕ
��
a

ϕ�
a

�2

−
ϕ
���
a

ϕ�
a

.

(3.2)
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By a conformal change of variable, we deduce �B0�H∞
3

= �A0�H∞
3
,

�B2�H∞
1

≤ sup
z∈D

|A2(z)| (1− |z|
2) + sup

z∈D

6|a|

|1− az|
(1− |z|

2) ≤ �A2�H∞
1

+ 12,

�B1�H∞
2

≤ sup
z∈D

|A1(z)| (1− |z|
2)2 + sup

w∈D
|A2(w)| (1− |w|

2)

����
ϕ
��
a(ϕa(w))

ϕ�
a(ϕa(w))

���� (1− |ϕa(w)|
2)

+ sup
z∈D

12|a|2

|1− az|2
(1− |z|

2)2 + sup
z∈D

6|a|2

|1− az|2
(1− |z|

2)2

≤ �A1�H∞
2

+ 4�A2�H∞
1

+ 72.

Let Z = Z(f) be the sequence of two-fold zeros of f , and let a ∈ Z; we may assume
that Z is not empty, for otherwise there is nothing to prove. Then, the zero of g = f ◦ϕa

at the origin is two-fold. By applying Jensen’s formula to z �→ g(z)/z2 we obtain

�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤

1

2π

� 2π

0
log+

����
g(reiθ)

g��(0)

���� dθ + log
2

r2
, 0 < r < 1, (3.3)

where log+ x = max{0, log x} for 0 ≤ x < ∞. Since
� 1

0

�
�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|

�
r dr =

�

zk∈Z\{a}

� 1

|ϕa(zk)|
r log

r

|ϕa(zk)|
dr

≥
1

8

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

,

the estimate (3.3) implies

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ 4

�

D
log+

����
g(z)

g��(0)

���� dm(z) + 4 log 2 + 4.

Consider the normalized solution h(z) = g(z)/g��(0) of (3.1), which has the initial
values h(0) = h

�(0) = 0 and h
��(0) = 1. By the proofs of the growth estimates [18,

Theorems 3.1 and 4.1, and Corollary 4.2], there exists an absolute constant C1 > 0 such
that

1

2π

� 2π

0
log+

��h(reiθ)
�� dθ ≤ C1

2�

j=0

j�

n=0

� 2π

0

�
r

0
|B

(n)
j

(seiθ)|(1− s)3−j+n−1
ds dθ.

By Cauchy’s integral formula and the estimates above, there exists a positive constant
C2 = C2(�A0�H∞

3
, �A1�H∞

2
, �A2�H∞

1
), independent of a ∈ D, such that

��B(n)
j

��
H

∞
3−j+n

≤ C2, j = 0, 1, 2, n = 0, . . . , j.

Let M∞
�
s,B

(n)
j

�
denote the maximum modulus of B(n)

j
on the circle of radius s. Now

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ 4 log 2 + 4 + 16πC1 sup
a∈Z

2�

j=0

j�

n=0

� 1

0

�
r

0
M∞

�
s,B

(n)
j

�
(1− s)2−j+n

ds dr

≤ 4 log 2 + 4 + 16πC1C2

2�

j=0

j�

n=0

� 1

0

�
r

0

ds

1− s2
dr < ∞.

The assertion of Theorem 1(i) follows from Lemma 5(i) below.
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(ii) As in the proof of (i), we conclude that g = f ◦ϕa is a solution of (3.1), where the
coefficients B0, B1, B2 depend on a ∈ D. By (2.3),

sup
a∈D

�

D
|B

(n)
j

(z)|(1− |z|
2)2−j+n

dm(z) < ∞, j = 0, . . . , 2, n = 0, . . . , j. (3.4)

In order to conclude (3.4), first get rid of the derivatives by standard estimates, and then
integrate the coefficients (3.2) term-by-term.

Let Z be the sequence of two-fold zeros of f . As above, there exists an absolute
constant C3 > 0 such that

sup
a∈Z

�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤ log

2

r2
+ C3 sup

a∈Z

2�

j=0

j�

n=0

�

D
|B

(n)
j

(z)|(1− |z|
2)2−j+n

dm(z)

for 0 < r < 1. By letting r → 1−, we obtain

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�
< ∞.

This implies the assertion of Theorem 1(ii) by Lemma 5(ii) below. �

The following lemma gives an estimate for the number of sequences in the finite union
appearing in the statement of Theorem 1. For more details, we refer to [9, Chapter 2.11].

Lemma 5. Let Z = {zk} be a sequence of points in D such that the multiplicity of each

point is at most p ∈ N, and let M ∈ N.
(i) If

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ M < ∞,

then {zk} can be expressed as a finite union of at most M+p separated sequences.

(ii) If

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�
≤ M < ∞, (3.5)

then {zk} can be expressed as a finite union of at most M +p uniformly separated

sequences.

Proof. (i) Assume on contrary to the claim, that every partition of Z into separated
subsequences is a union of at least M + p + 1 sequences. Then, for each n ∈ N, there
exists a point zn ∈ Z such that

#
�
zk ∈ Z : |ϕzn(zk)| ≤ 2−n

�
≥ M + p+ 1.

Now

p+M ≥ p +
�

zk∈Z\{zn}

�
1− |ϕzn(zk)|

2
�2

≥

�

zk∈Z

�
1− |ϕzn(zk)|

2
�2

≥ #
�
zk ∈ Z : |ϕzn(zk)| ≤ 2−n

�
· (1− 4−n)2 ≥ (M + p+ 1)(1− 4−n)2.

By letting n → ∞ we arrive to a contradiction. Hence Z can be expressed as a union of
at most M + p separated sequences.

(ii) By part (i), Z can be expressed as a union of at most M + p separated sequences,
and each of these separated sequences is uniformly separated by (3.5). �
Example 1. If {f, g} is a solution base of (1.2), then {f2

, g
2
, fg} is a solution base of

h
��� + 4Ah� + 2A�

h = 0. (3.6)
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Let us apply this property to a classical example [36, p. 162] originally due to Hille [20,
p. 552]. For γ > 0, the differential equation (1.2) with A(z) = (1+4γ2)/(1− z

2)2, z ∈ D,
admits the solution

f(z) =
�
1− z2 sin

�
γ log

1 + z

1− z

�
, z ∈ D.

The zeros of f are simple and real, and moreover, the hyperbolic distance between two
consecutive zeros is precisely π/(2γ). Consequently, (3.6) admits the solution h = f

2

whose zero-sequence is a union of two separated sequences. This sequence is a union
of two uniformly separated sequences (in fact, a union of two exponential sequences),
since all zeros are real [8, Theorem 9.2]. In this case the coefficients of (3.6) satisfy both
conditions (2.2) and (2.3). �

4. Inclusion relations between function spaces

The following result can be used to compare the coefficient conditions. In particular,
Lemma 6 shows that the coefficient condition in Theorem 3 (which implies that all solu-
tions of (1.2) are in BMOA) is strictly stronger than A ∈ L1 with sufficiently small norm
(which places all solutions in B ∩H

2). And further, Lemma 6 proves that A ∈ L1 with
sufficiently small norm is strictly stronger than the coefficient condition in Theorem A
below (which forces solutions to be in Hardy spaces). The reader is invited to compare
Lemma 6 to the results in [4, Section 5].

If A ∈ H(D) and

sup
a∈D

�

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (4.1)

is finite, then we write A ∈ BMOA��. Note that A ∈ BMOA�� if and only if there exists
a function g = g(A) ∈ BMOA such that A = g

��, which follows from standard estimates.
Correspondingly, if A ∈ H(D) and

�A�
2
LMOA�� = sup

a∈D

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) < ∞,

then A ∈ LMOA��. As expected, LMOA�� consists of those functions in H(D) which can be
represented as the second derivative of a function in LMOA. For more details on LMOA,
see [4, 37]. Finally, part (iv) of Lemma 6 gives a sufficient condition for a lacunary series
to be in LMOA��.

Lemma 6. The following assertions hold:

(i) Lα1 � Lα2 � H
∞
2 for any 0 < α2 < α1 < ∞;

(ii) LMOA�� � L1 � Lα � BMOA�� � H
∞
2 for any 1/2 < α < 1;

(iii) L3/2 � LMOA��
, and LMOA�� \

�
1<α<∞ Lα

is non-empty;

(iv) if {nk}
∞
k=1 ⊂ N and {ak}

∞
k=1 ⊂ C satisfy the conditions infk∈N nk+1/nk > 1 and�∞

k=1 |ak|
2(log nk)3/n4

k
< ∞, then

��∞
k=1 akz

nk
�
∈ LMOA��

.

Proof. As (i) is an immediate consequence of the definitions, we proceed to prove (ii). Let
A ∈ LMOA��. Since (2.5) is finite and |A|2 is subharmonic, we deduce �A�2L1 � �A�2LMOA�� .
Assume on contrary to the assertion that LMOA�� = L1. By [15, Theorem 1], there exist
A0, A1 ∈ H(D) satisfying

|A0(z)|+ |A1(z)| �
1

(1− |z|2)2 log e

1−|z|
, z ∈ D.

Since A0, A1 ∈ LMOA��, we deduce
�

Sa

dm(z)

(1− |z|2)
�
log e

1−|z|
�2 �

�

Sa

�
|A0(z)|+ |A1(z)|

�2
(1− |z|

2)3 dm(z) � 1− |a|
�
log e

1−|a|
�2
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as |a| → 1−. This contradicts the fact
�

Sa

dm(z)

(1− |z|2)
�
log e

1−|z|
�2 �

1− |a|

log e

1−|a|
, |a| → 1−,

and hence LMOA�� �= L1. The remaining part of (ii) is a straightforward computation.
Note that the inclusion Lα � BMOA��, for any 1/2 < α < ∞, is strict by A(z) = (1−z)−2.

To prove (iii) it suffices to prove the latter assertion, as L3/2 ⊂ LMOA�� follows directly

from (2.5). If A(z) = (1 − z)−2
�
log e

1−z

�−1
for z ∈ D, then A /∈

�
1<α<∞ Lα. To show

that A ∈ LMOA��, it is enough to verify (2.5) for 0 < a < 1. Since
����log

e

1− z

���� ≥ log
e

|1− z|
≥ log

e

2(1− a)
, z ∈ Sa, (4.2)

we conclude

sup
0<a<1

�
log e

1−a

�2

1− a

�

Sa

|A(z)|2(1− |z|
2)3 dm(z)

� sup
0<a<1

1

1− a

� 1

a

� 2π

0

dθ

|1− reiθ|4
(1− r

2)3 r dr < ∞.

(4.3)

In order to prove (iv), let A(z) =
�∞

k=1 akz
nk for z ∈ D. If h(z) =

�∞
k=1 z

nk for z ∈ D,
then h ∈ B with M∞(r, h) =

�∞
k=1 r

nk � log e

1−r
for 0 < r < 1. By the Cauchy-Schwarz

inequality,

M∞(r, A) �
� ∞�

k=1

|ak|
2
r
nk

�1/2�
log

e

1− r

�1/2

, 0 < r < 1.

It follows that

sup
a∈D

�
log e

1−|a|
�2

1− |a|

�

Sa

|A(z)|2(1− |z|
2)3 dm(z)

�
� 1

0
M∞(r, A)2(1− r)3

�
log

e

1− r

�2

dr

�
∞�

k=1

|ak|
2
� 1

0
r
nk(1− r)3

�
log

e

1− r

�3

dr �

∞�

k=1

|ak|
2 (log nk)3

n
4
k

,

where the asymptotic equality follows from [28, Lemma 1.3]. This completes the proof of
Lemma 6. �

5. Bounded solutions

We consider bounded solutions of (1.2). As usual, the space H
∞ consists of f ∈ H(D)

for which �f�H∞ = supz∈D |f(z)| < ∞. The proof of Theorem 2(i) takes advantage of
the well-known representation formula

g(ζ) =
1

2π

� 2π

0

g(eit)

1− e−itζ
dt, ζ ∈ D, (5.1)

which holds for any g ∈ H
1 [8, Theorem 3.6].

Let M be the collection of all (finite) complex Borel measures on T. For µ ∈ M , the
total variation measure |µ| is defined as a set function

|µ|(E) = sup
�

j

|µ(Ej)|,



10 JANNE GRÖHN, JUHA-MATTI HUUSKO AND JOUNI RÄTTYÄ

where the supremum is taken over all countable (Borel) partitions {Ej} of E ⊂ T. More-
over, �µ� = |µ|(T) is the total variation of µ [34, Chapter 6]. Let K be the space of
Cauchy transforms, which consists of analytic functions in D of the form

(Kµ)(z) =

�

T

dµ(ζ)

1− ζz
, z ∈ D,

for some µ ∈ M . For each f ∈ K there is a set Mf =
�
µ ∈ M : f = Kµ

�
of measures

that represent f , and produce the norm

�f�K = inf
�
�µ� : µ ∈ Mf

�
.

We refer to [6] for more details.

Proof of Theorem 2(i). Let f be any solution of (1.2), and write fr(z) = f(rz) for 0 ≤

r < 1. Then fr is analytic in D and satisfies f
��
r (w) + r

2
A(rw)fr(w) = 0 for w ∈ D. By

(2.6), (5.1) for g = fr, and Fubini’s theorem, we conclude

fr(z) = −
1

2π

� 2π

0
fr(e

it)

�
z

0

�
ζ

0

r
2
A(rw)

1− e−itw
dw dζ dt+ f

�
r(0)z + fr(0), z ∈ D.

For all 0 < r < 1 sufficiently large, and z ∈ D, there exists µr,z ∈ M such that

Ar,z(u) = (Kµr,z)(u), u ∈ D, (5.2)

and �µr,z� < δ for some absolute constant 0 < δ < 1. Hence, by [6, Theorem 4.2.2],

fr(z) = −
r
2

2π

� 2π

0
fr(e

it)(Kµr,z)(eit) dt+ f
�
r(0)z + fr(0)

= −r
2
�

T
fr(x)dµr,z(x) + f

�
r(0)z + fr(0), z ∈ D.

By [34, Theorem 6.12], there exist measurable functions hr,z such that |hr,z(ζ)| = 1 for
all ζ ∈ T and the polar decompositions dµr,z = hr,z d|µr,z| hold. Therefore

|fr(z)| ≤

����
�

T
fr(x)hr,z(x) d|µr,z|(x)

����+ |f
�
r(0)|+ |fr(0)|

≤ �fr�H∞

�

T
d|µr,z|+ |f

�
r(0)|+ |fr(0)|

≤ �fr�H∞�µr,z�+ |f
�(0)|+ |f(0)|, z ∈ D.

This implies �f�H∞ ≤ (|f(0)|+ |f �(0)|)/(1− δ), and hence completes the proof of Theo-
rem 2(i). �

Let 0 < p < ∞, n ∈ N and f ∈ H(D). The proof of Theorem 2(ii) relies on a classical
representation

�f�
p

Hp �

�

T

��

Γ(ζ)
|f

(n)(z)|2(1− |z|
2)2n−2

dm(z)

�p/2

|dζ|+
n−1�

j=0

|f
(j)(0)|p, (5.3)

which involves non-tangential approach regions; see [1, p. 125], for example. Hardy
spaces Hp are further considered in Section 9. For a fixed 1 < α < ∞, the non-tangential
approach region of aperture 2 arctan

√
α2 − 1, with vertex at ζ ∈ T, is given by Γ(ζ) =

{z ∈ D : |z − ζ| ≤ α(1− |z|)}. The corresponding non-tangential maximal function is

f
�(ζ) = sup

z∈Γ(ζ)
|f(z)|, ζ ∈ T. (5.4)

Proof of Theorem 2(ii). Let A(z) =
�∞

n=0 anz
n for z ∈ D. By the assumption, A(z) =�

z

0 A(ζ) dζ satisfies A ∈ H
1. We compute

� 1

0
M∞(r, A)(1− r) dr ≤

� 1

0

� ∞�

n=0

|an|r
n

�
(1− r) dr =

∞�

n=0

|an|

(n+ 1)(n+ 2)
≤ π �A�H1 ,
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where the last estimate follows from Hardy’s inequality [8, p. 48]. By [19, Corollary 3.16],
we conclude that all solutions of (1.2) are bounded.

Let f be a solution of (1.2). Then

f
�(z) = −

�
z

0
f(ζ)A(ζ) dζ + f

�(0), z ∈ D,

and hence by (5.3), we deduce

�f
�
�H1 ≤

����
�

z

0
f(ζ)A(ζ) dζ

����
H1

+ |f
�(0)|

�

�

T

��

Γ(ζ)
|f(z)|2|A(z)|2 dm(z)

�1/2

|dζ|+ |f
�(0)|+ |f

��(0)|

≤ �f�H∞ �A�H1 + |f
�(0)|+ |f

��(0)|.

The assertion f
� ∈ H

1 follows. �
Remark 1. For each 0 < r < 1 and z ∈ D, it is easy to see that

d�µr,z(x) =

��
z

0

�
ζ

0

A(rw)

x− w
dw dζ

�
dx

2πi
, x ∈ T,

is one of the representing measures for which (5.2) holds, and hence �Ar,z�K ≤ ��µr,z�.
Moreover, the behavior of the second primitive of A is controlled by this measure in the
sense that

�
z

0

�
ζ

0
A(rw) dwdζ =

�
z

0

�
ζ

0

�
1

2πi

�

T

dx

x− w

�
A(rw) dwdζ =

�

T
d�µr,z(x),

which follows from Cauchy’s integral formula and Fubini’s theorem.

6. Solutions of bounded and vanishing mean oscillation

The space BMOA consists of those f ∈ H(D) for which

�f�
2
BMOA = sup

a∈D
�fa�

2
H2 < ∞, (6.1)

where fa(z) = f(ϕa(z))− f(a) for a, z ∈ D. By the Littlewood-Paley identity,

�f�
2
BMOA ≤ 4 sup

a∈D

�

D
|f

�(z)|2(1− |ϕa(z)|
2) dm(z) ≤ 4 �f�2BMOA, (6.2)

see [11, pp. 228–230]. Clearly, BMOA is a subspace of the Bloch space B.
A positive Borel measure µ on D is called a Carleson measure, if

�µ�Carleson = sup
a∈D

µ(Sa)

1− |a|
< ∞.

There exists a constant 1 ≤ α < ∞ such that

1

1− |a|
≤ α

1− |a|2

|1− az|2
= α |ϕ

�
a(z)|, z ∈ Sa, a ∈ D,

since |1− az| ≤ |1− |a|2|+ ||a|2 − az| � 1− |a|. Consequently,

�µ�Carleson = sup
a∈D

�

Sa

1

1− |a|
dµ(z) ≤ α · sup

a∈D

�

D
|ϕ

�
a(z)| dµ(z). (6.3)

We prove Theorem 3 and consider its counterpart for VMOA. Theorem 3 is inspired
by [37, Theorem 3.1]. We return to consider BMOA and VMOA solutions in Section 8,
where parallel results are obtained by using the representation formula for H1 functions.
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Proof of Theorem 3. The proof consists of two steps. First, we show that

sup
1/2<r<1

sup
a∈D

�
log

e

1− |a|

�2 �

D
|A(rz)|2(1−|z|

2)2(1−|ϕa(z)|
2) dm(z) � �A�

2
LMOA�� . (6.4)

Denote

I(a, r) =

�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z), 0 < r < 1, a ∈ D,

for short. For |a| ≤ 1/2 the estimate (6.4) is trivial. Let 1/2 < |a| < 1/(2 − r). Since
|1− az| ≤ 2 |1− az/r| for |z| ≤ r, we deduce

I(a, r) =

�

D(0,r)
|A(z)|2

�
1−

�� z
r

��2 �3 1− |a|2

��1− a
z

r

��2
dm(z)

r2

≤
4

r2

�

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) ≤ 16 �A�

2
LMOA��

�
log

e

1− |a|

�−2

.

for any 1/2 < r < 1. Let 1/(2− r) ≤ |a| < 1. Now

I(a, r) ≤ �A�
2
L1

�

D

�
1− |z|2

�2�
1− |ϕa(z)|2

�
�
1− |rz|2

�4�
log e

1−|rz|
�2 dm(z)

� �A�
2
L1

� 1

0

(1− s)3(1− |a|)

(1− rs)4
�
log e

1−rs

�2
(1− |a|s)

ds.

As t �→ (1− t)2
�
log e

1−t

�
is decreasing for 0 < t < 1, we apply r ≤ 2− 1/|a| to obtain

I(a, r) � �A�
2
L1(1− |a|)

� |a|

0

ds

(1− s)2
�
log e

1−s

�2 +
�A�2L1

(1− |a|)4
�
log e

1−|a|
�2

� 1

|a|
(1− s)3 ds

� �A�
2
L1

�
log

e

1− |a|

�−2

.

Since �A�2L1 � �A�2LMOA�� by the proof of Lemma 6(ii), this completes the proof of (6.4).
Second, we proceed to consider the differential equation (1.2). Let f be a non-trivial

solution of (1.2). By Lemma 6(ii) and [21, Corollary 4(b)], we may assume that f ∈ B.
Now, (1.2) and (6.2) yield

�fr�
2
BMOA � sup

a∈D

�
|f

�(ra)|2(1− |a|
2)2 r2 +

�

D
r
4
|f

��(rz)|2(1− |z|
2)2(1− |ϕa(z)|

2) dm(z)

�

� �fr�
2
B + sup

a∈D

�

D
|fr(z)− fr(a)|

2
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z)

+ sup
a∈D

|fr(a)|
2
�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z)

� �fr�
2
B + I1 + I2

with absolute comparison constants. By Carleson’s theorem [8, Theorem 9.3], (6.1) and
(6.3),

I1 � sup
a∈D

�

D
|(fr)a(z)|

2
��A(rϕa(z))

��2�1− |ϕa(z)|
2
�3

|ϕ
�
a(z)| dm(z)

� sup
a∈D

���(fr)a
��2
H2 · sup

b∈D

�

D

��A(rϕa(z))
��2�1− |ϕa(z)|

2
�3
|ϕ

�
a(z)||ϕ

�
b
(z)| dm(z)

�

� �fr�
2
BMOA · sup

c∈D

�

D
|A(rz)|2(1− |z|

2)2
�
1− |ϕc(z)|

2
�
dm(z).
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Estimation of I2 is easier. By [12, Corollary 5.3],

I2 � �fr�
2
BMOA · sup

a∈D

�
log

e

1− |a|

�2 �

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z).

If (2.4) is sufficiently small, then (6.4) implies that �fr�BMOA is uniformly bounded for
1/2 < r < 1. By letting r → 1−, we conclude f ∈ BMOA. �

The following example reveals that the coefficient condition in Theorem 3 allows so-
lutions of (1.2) to be unbounded. Moreover, the same construction with 1 < α < ∞

illustrates that the finiteness of (2.4) is not enough to guarantee that all solutions of
(1.2) are in BMOA. The same construction is applied in [21, Example 5(b)].

Example 2. Let 0 < α ≤ 1, and define

A(z) =
−α

(1− z)2

�
(α− 1)

�
log

e

1− z

�−2

+

�
log

e

1− z

�−1�
, z ∈ D.

Then A ∈ H(D), and (1.2) admits two linearly independent solutions

f1(z) =

�
log

e

1− z

�α

, f2(z) =

�
log

e

1− z

�α � z

0

�
log

e

1− ζ

�−2α

dζ, z ∈ D,

which are unbounded on positive real axis; see also [21, Example 5(b)]. We denote
A = −αB1 − α(α − 1)B2, where Bj(z) = (1 − z)−2(log(e/(1 − z)))−j for z ∈ D and
j = 1, 2. Since |B2(z)| ≤ |B1(z)| (log(e/2))

−1 for all z ∈ D, and (4.2) holds for any
0 < a < 1, we conclude (4.3). We point out that, for a sufficiently small α, the coefficient
A satisfies the assumptions of Theorem 3 and hence all solutions of (1.2) are in BMOA.

The space VMOA consists of those f ∈ H
2 for which

lim
|a|→1−

�fa�
2
H2 = 0,

where fa is the auxiliary function in the beginning of Section 6. Clearly, VMOA is
a subspace of the little Bloch space B0. As Theorem 3 is motivated by [37, Theorem 3.1],
the counterpart of the following result is [37, Theorem 3.6].

Theorem 7. Let A ∈ H(D). If (2.4) is sufficiently small and

lim
|a|→1−

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) = 0,

then all solutions f of (1.2) satisfy f ∈ VMOA.

The proof of Theorem 7 is omitted, since it is similar to the proof of Theorem 3. Note
that the coefficient condition in Theorem 7 implies (7.11), and hence forces all solutions
of (1.2) to be in the little Bloch space B0. See the end of Section 7 for more details.

7. Solutions in the Bloch and the little Bloch spaces

An integrable function ω : D → [0,∞) is called a weight. The weight ω is said to be
radial if ω(u) = ω(|u|) for all u ∈ D. For 0 < p < ∞ and a weight ω, the weighted
Bergman space A

p
ω consists of those f ∈ H(D) for which

�f�
p

A
p
ω
=

�

D
|f(u)|pω(u) dm(u) < ∞.

For a radial weight ω, we define �ω(u) =
� 1
|u| ω(r) dr for u ∈ D. We denote ω ∈ D whenever

ω is radial and there exist constants C = C(ω) ≥ 1, α = α(ω) > 0 and β = β(ω) ≥ α

such that

C
−1

�
1− r

1− t

�α

�ω(t) ≤ �ω(r) ≤ C

�
1− r

1− t

�β

�ω(t) (7.1)
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for all 0 ≤ r ≤ t < 1. The existence of constants β = β(ω) > 0 and C = C(ω) > 0
for which the right-hand side inequality of (7.1) is satisfied is equivalent to the existence
of a constant K = K(ω) ≥ 1 such that the doubling property �ω(r) ≤ K �ω((1 + r)/2)
holds for all 0 ≤ r < 1 [29, Lemma 1]. Moreover, the left-hand side inequality of (7.1)
is equivalent to the existence of constants K = K(ω) > 1 and L = L(ω) > 1 such that
�ω(r) ≥ K �ω(1− (1− r)/L) for all 0 ≤ r < 1, see [31] for more details.

Let 0 < p < ∞ and ω be a radial weight. If �ω(r) = 0 for some 0 < r < 1, then
A

p
ω = H(D). Let ω be a radial weight such that �ω(r) > 0 for all 0 ≤ r < 1. By standard

estimates,

�f�
p

A
p
ω
� Mp

�
1 + r

2
, f

�p

�ω
�
1 + r

2

�
� M∞(r, f)p(1− r) �ω

�
1 + r

2

�
, 0 < r < 1,

where Mp(r, f) denotes the H
p mean of f , and hence

|f(z)| � �f�Ap
ω

�ω
�
1+|z|
2

�1/p
(1− |z|)1/p

, z ∈ D. (7.2)

We will concentrate on the case p = 2. By (7.2), the norm convergence in A
2
ω implies the

uniform convergence on compact subsets of D, and consequently each point evaluation
Lζ(f) = f(ζ) is a bounded linear functional in the Hilbert space A

2
ω. Hence, there exist

unique reproducing kernels Bω

ζ
∈ A

2
ω with �Lζ� = �Bω

ζ
�A2

ω
such that

f(ζ) = �f,B
ω

ζ
�A2

ω
=

�

D
f(u)Bω

ζ
(u)ω(u) dm(u), f ∈ A

2
ω. (7.3)

Moreover, the normalized monomials (2ω2n+1)−1/2
z
n, for n ∈ N∪{0}, form the standard

orthonormal basis of A2
ω, and hence

B
ω

ζ
(u) =

∞�

n=0

(uζ)n

2ω2n+1
, u, ζ ∈ D; (7.4)

see [41, Theorem 4.19] for details in the classical case. Here ωx =
� 1
0 r

x
ω(r) dr for

1 ≤ x < ∞. Weight ω is called normalized if ω1 = 1/2, which implies that ω(D) =�
D ω(u) dm(u) = 2ω1 = 1.
We begin with a lemma which shows that the derivative of Bω

ζ
is closely related to

the reproducing kernel of another Bergman space with a suitably chosen weight. For
example, Bω

ζ
(u) = (1− uζ)−2−α is the reproducing kernel corresponding to the standard

weight ω(u) = (α+1)(1−|u|2)α, α > −1, while (Bω

ζ
)�(u) = (2+α)ζ(1−uζ)−3−α is related

to the reproducing kernel of the Bergman space with the weight �ω(u) = (1− |u|2)α+1. In
general, we define

�ω(u) = 2

� 1

|u|
ω(r)r dr, u ∈ D,

for any radial weight ω.

Lemma 8. If ω is radial then (Bω

ζ
)�(u) = ζ B

�ω
ζ
(u) for u, ζ ∈ D.

Proof. It is clear that representations (7.4) exist for both B
ω

ζ
and B

�ω
ζ
. By Fubini’s theo-

rem,

�ω2n+1 = 2

� 1

0
ω(s)s

�
s

0
r
2n+1

dr ds =
ω2n+3

n+ 1
, n ∈ N ∪ {0},

and hence

(Bω

ζ
)�(u) = ζ

∞�

n=0

(n+ 1)(uζ)n

2ω2n+3
= ζ B

�ω
ζ
(u), u, ζ ∈ D.

This proves the assertion. �
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The following auxiliary result is well-known to experts. For a radial weight ω, we define

ω
�(u) =

� 1

|u|
log

r

|u|
ω(r) r dr, u ∈ D \ {0}.

Lemma 9. If f, g ∈ H
2
, then

1

2π

� 2π

0
f(eit)g(eit) dt = 2

�

D
f
�(u)g�(u) log

1

|u|
dm(u) + f(0)g(0). (7.5)

Moreover, if f, g ∈ H(D) and ω is a normalized radial weight, then

�f, g�A2
ω
= 4 �f �

, g
�
�
A

2
ω�

+ f(0)g(0).

Proof. Identity (7.5) is a special case of [41, Theorem 9.9]. Let f, g ∈ H(D). By (7.5),

1

π

� 2π

0
f(reit)g(reit) dt = 4

�

D(0,r)
f
�(u)g�(u) log

r

|u|
dm(u) + 2f(0)g(0).

The assertion follows by integrating both sides with respect to the measure ω(r)r dr and
using Fubini’s theorem. �

Recall that the Bloch space B consists of those f ∈ H(D) for which
�f�B = sup

z∈D
|f

�(z)|(1− |z|
2) < ∞.

Theorem 10. Let ω ∈ D be normalized, and A ∈ H(D) such that

lim sup
r→1−

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u) <

1

4
. (7.6)

Then every solution f of (1.2) satisfies f ∈ B, and

�f�B ≤
1

1− 4XB(A)

�
|f(0)| sup

z∈D
(1− |z|

2)

����
�

z

0
A(ζ) dζ

����+ |f
�(0)|

�
,

where

XB(A) = sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) <

1

4
.

Proof. Observe that ω�(u)/(1− |u|2) � �ω(u) as |u| → 1−, since ω ∈ D by the hypothesis.
For fixed z ∈ D, Fubini’s theorem and Lemma 8 yield

lim sup
r→1−

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

� (1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

���� �ω(u) dm(u)

≥ (1− |z|
2)

����
�

z

0
�1, B�ω

ζ
�
A

2
�ω
A(ζ)ζ dζ

���� ≥ (1− |z|
2)

����
�

z

0
A(ζ)ζ dζ

���� ,

(7.7)

and it follows that A ∈ H
∞
2 . Note that the use of the reproducing formula could be

avoided by a straightforward integration.
Let f be any solution of (1.2). Then

f
�
r(z) = −

�
z

0
fr(ζ)r

2
A(rζ) dζ + f

�
r(0), z ∈ D. (7.8)

The reproducing formula (7.3) and Fubini’s theorem imply

f
�
r(z) = −

�
z

0

��

D
fr(u)Bω

ζ
(u)ω(u) dm(u)

�
r
2
A(rζ) dζ + f

�
r(0)

= −

�

D
fr(u)

��
z

0
B

ω

ζ
(u)r2A(rζ) dζ

�
ω(u) dm(u) + f

�
r(0), z ∈ D,
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from which the second part of Lemma 9 yields

f
�
r(z) = −4

�

D
f
�
r(u)

��
z

0
(Bω

ζ
)�(u)r2A(rζ) dζ

�
ω
�(u) dm(u)

− fr(0)

�
z

0
r
2
A(rζ) dζ + f

�
r(0), z ∈ D.

It follows that

�fr�B ≤ 4 �fr�B sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

+ |f(0)| sup
z∈D

(1− |z|
2)

����
�

z

0
A(rζ) dζ

����+ |f
�(0)|, 0 < r < 1.

We deduce f ∈ B by re-organizing the terms and letting r → 1−.
Since f ∈ B, we know that M∞(r, f) � log(e/(1 − r)) for 0 < r < 1. Hence, for any

0 < p < ∞,

�f�
p

A
p
ω
� �ω(0) + p

� 1

0

�
log

e

1− r

�p−1 1

(1− r)1−α
dr < ∞

by partial integration and (7.1); see also [27, Proposition 6.1]. Now that f ∈ B ⊂ A
2
ω,

we may repeat the proof from the beginning with r = 1 to deduce the second part of the
assertion. �

Remark 2. The proof of Theorem 10 shows that, in order to conclude f ∈ B, it suffices
to take the supremum in (7.6) over any annulus R < |z| < 1 instead of D.

We apply an operator theoretic argument to study the sharpness of Theorem 10. Let

I(A,ω) = lim sup
r→1−

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

denote the left-hand side of (7.6), for short.

Theorem 11. Let ω ∈ D be normalized and A ∈ H(D). Then the following statements

are equivalent:

(i) A ∈ L1
;

(ii) I(A,ω) < ∞;

(iii) the operator SA : B → B is bounded.

Proof. (i) =⇒ (ii): Observe that ω
�(u)/(1 − |u|2) � �ω(u) as |u| → 1−. By Fubini’s

theorem,

I(A,ω) � lim sup
r→1−

sup
z∈D

(1− |z|
2)

�
z

0
|A(rζ)|

��

D

��(Bω

ζ
)�(u)

�� �ω(u) dm(u)

�
|dζ|,

where
�

D

��(Bω

ζ
)�(u)

�� �ω(u) dm(u) �
� |ζ|

0

��ω(t) dt
�ω(t)(1− t)2

�

� |ζ|

0

dt

1− t2
=

1

2
log

1 + |ζ|

1− |ζ|
, ζ ∈ D,

by [30, Theorem 1], Fubini’s theorem and (7.1). It follows that I(A,ω) � �A�L1 < ∞.
(ii) =⇒ (iii): This implication follows by an argument similar to the proof of Theo-

rem 10. As in (7.7), we deduce

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) ≤ I(A,ω) < ∞,
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and A ∈ H
∞
2 . Let f ∈ B ⊂ A

2
ω. The reproducing formula (7.3), Fubini’s theorem and

Lemma 9 imply
��SA(f)

��
B = sup

z∈D
(1− |z|

2)

����
�

z

0
f(ζ)A(ζ) dζ

���� � �f�B I(A,ω) + |f(0)| · �A�H∞
2

�
�
�f�B + |f(0)|

�
I(A,ω),

and hence we deduce (iii).
(iii) =⇒ (i): By the assumption, there exists a constant C > 0 such that

sup
z∈D

|f(z)| |A(z)|(1− |z|
2)2 =

��SA(f)
����

H
∞
2

�
��SA(f)

��
B ≤ C

�
�f�B + |f(0)|

�
(7.9)

for any f ∈ B. Consider the family of test functions

fζ(z) = log
e

1− ζz
, z, ζ ∈ D,

for which supζ∈D �fζ�B ≤ 2. By (7.9),
����log

e

1− ζz

���� |A(z)|(1− |z|
2)2 ≤ 3C, z, ζ ∈ D,

which gives (i) for ζ = z. �
A close look at the proof of Theorem 11 implies

I(A,w) � sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u).

We obtain the following consequence of Theorem 10.

Corollary 12. Let ω ∈ D be normalized, and A ∈ H(D) such that

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) (7.10)

is sufficiently small. Then every solution of (1.2) belongs to B.

Remark 3. In order to conclude that all solutions of (1.2) are in B, it suffices to take the
supremum in (7.10) over any annulus R < |z| < 1 instead of D.

The little Bloch space B0 consists of those f ∈ H(D) for which
lim

|z|→1−
|f

�(z)|(1− |z|
2) = 0.

The following result is a counterpart of Theorem 10 concerning the little Bloch space.

Theorem 13. Let ω ∈ D be normalized, and A ∈ H(D) such that

lim
|z|→1−

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) = 0.

Then every solution of (1.2) belongs to B0.

Proof. As in (7.7), we conclude

lim
|z|→1−

(1− |z|
2)

����
�

z

0
A(ζ)ζ dζ

���� = 0.

By the assumption and Remark 3, it follows that each solution f of (1.2) satisfies
f ∈ B ⊂ A

2
ω. As in the proof of Theorem 10, we have

(1− |z|
2)|f �(z)| ≤ 4 �f�B (1− |z|

2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

+ |f(0)| (1− |z|
2)

����
�

z

0
A(ζ) dζ

����+ (1− |z|
2)|f �(0)|, z ∈ D.

The assertion follows. �
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If A ∈ H(D) and
lim

|z|→1−
|A(z)|(1− |z|

2)2 log
e

1− |z|
= 0, (7.11)

then every solution of (1.2) belongs to B0. Actually, f ∈ B by Remark 3. Therefore

f
��(z) = −A(z)

�

D

f(u)

(1− uz)2
dm(u), z ∈ D.

By applying Lemma 9 twice, we obtain

|f
��(z)| � |A(z)|

�
|f(0)|+ |f

�(0)|+ �f
��
�H∞

2

�

D

(1− |u|2)2

|1− uz|
4 dm(u)

�
, z ∈ D.

Since f ∈ B, we deduce f
�� ∈ H

∞
2 , and hence the argument above shows that f ∈ B0

by [41, Lemma 3.10 and Theorem 5.13].
The coefficient condition (7.11), which forces all solutions of (1.2) to be in B0, is

sharp in the sense that it cannot be replaced by A ∈ L1. Indeed, the function f(z) =
log(e/(1− z)) ∈ B \ B0 is a solution of (1.2) for

A(z) =
−1

(1− z)2 log(e/(1− z))
, z ∈ D.

8. Solutions of bounded and vanishing mean oscillation — parallel
results

In this section, we consider two coefficient estimates, which are derived from the rep-
resentation (5.1). These estimates give sufficient conditions for all solutions of (1.2)
to be in BMOA or VMOA. Recall that, by (6.2) and (6.3), the measure dµf (z) =
|f �(z)|2(1− |z|2) dm(z) satisfies

�µf�Carleson � �f�
2
BMOA. (8.1)

Actually, f ∈ BMOA if and only if µf is a Carleson measure [11, p. 231].

Theorem 14. Let A ∈ H(D). If

lim sup
r→1−

sup
a∈D

�

D

�
1

2π

� 2π

0

����
�

z

0

A(rζ) dζ

1− e−itζ

���� dt
�2

(1− |ϕa(z)|
2) dm(z) (8.2)

is sufficiently small, then all solutions of (1.2) belong to BMOA.

Proof. By applying (5.1) to g ≡ 1, we obtain
����
�

z

0
A(rζ) dζ

���� =
����
1

2π

� 2π

0

�
z

0

A(rζ) dζ

1− e−itζ
dt

���� ≤
1

2π

� 2π

0

����
�

z

0

A(rζ) dζ

1− e−itζ

���� dt, (8.3)

for 0 ≤ r ≤ 1 and z ∈ D. By (6.2) and (8.2), any second primitive of A belongs to BMOA.
Let f be a solution of (1.2). Then fr is analytic in D and satisfies f ��

r (ζ)+r
2
A(rζ)fr(ζ) =

0. We deduce (7.8). By (5.1) and Fubini’s theorem,

f
�
r(z) = −

1

2π

� 2π

0
fr(e

it)

�
z

0

r
2
A(rζ)

1− e−itζ
dζ dt+ f

�
r(0)

= −
r
2

2π

� 2π

0
fr(e

it)gr,z(eit) dt+ f
�
r(0), z ∈ D,

where

gr,z(w) =

�
z

0

A(rζ)

1− wζ
dζ, w ∈ D. (8.4)

Since fr, gr,z ∈ H
2, Lemma 9 implies

1

2π

� 2π

0
fr(e

it)gr,z(eit) dt = 2

�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w) + fr(0)gr,z(0).
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We deduce

|f
�
r(z)|

2
≤ 8

����
�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w)

����
2

+ 2
��fr(0)gr,z(0)− f

�
r(0)

��2, z ∈ D.

By the Hardy-Stein-Spencer formula

�

D

|g�r,z(w)|
2

|gr,z(w)|
log

1

|w|
dm(w) ≤ 2 �gr,z�H1 ,

and hence by (8.1) and Carleson’s theorem [8, Theorem 9.3], there exist absolute constants
0 < C < ∞ and 0 < C

�
< ∞ such that

����
�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w)

����
2

≤

�

D

|g�r,z(w)|
2

|gr,z(w)|
log

1

|w|
dm(w)

·

�

D
|gr,z(w)||f

�
r(w)|

2 log
1

|w|
dm(w)

≤ 2 �gr,z�H1C
�
�µfr�Carleson �gr,z�H1

≤ 2C �gr,z�
2
H1�fr�

2
BMOA.

We have |f �
r(z)|

2 ≤ 16C �gr,z�
2
H1�fr�

2
BMOA +4 |fr(0)|2|gr,z(0)|2 +4 |f �

r(0)|
2 for z ∈ D, and

by (6.2),

�fr�
2
BMOA ≤ 64C �fr�

2
BMOA sup

a∈D

�

D
�gr,z�

2
H1(1− |ϕa(z)|

2) dm(z)

+ 16 |fr(0)|
2 sup

a∈D

�

D
|gr,z(0)|

2(1− |ϕa(z)|
2) dm(z) + 16 |f �

r(0)|
2
.

By re-organizing terms and letting r → 1−, the assertion follows. �

Remark 4. The proof of Theorem 14 shows that, in order to conclude f ∈ BMOA, it
suffices to take the supremum in (8.2) over any annulus R < |z| < 1 instead of D.

Theorem 15. Let A ∈ H(D). If (8.2) is sufficiently small and

lim
|a|→1−

�

D

�
1

2π

� 2π

0

����
�

z

0

A(ζ)dζ

1− e−itζ

���� dt
�2

(1− |ϕa(z)|
2) dm(z) = 0,

then every solution of (1.2) belongs to VMOA.

Proof. First, by the assumption and (8.3), any second primitive of A belongs to VMOA.
Let f be any solution of (1.2). By the assumption and Theorem 14, we have f ∈ BMOA.
As in the proof of Theorem 14, we obtain

|f
�(z)|2 � �g1,z�

2
H1�f�

2
BMOA + |g1,z(0)|

2
|f(0)|2 + |f

�(0)|2, z ∈ D,

where g1,z is the function in (8.4). Hence, by (6.2),

�fa�
2
H2 � �f�

2
BMOA

�

D
�g1,z�

2
H1(1− |ϕa(z)|

2) dm(z)

+ |f(0)|2
�

D
|g1,z(0)|

2 (1− |ϕa(z)|
2) dm(z)

+ |f
�(0)|2(1− |a|

2)

�

D

1− |z|2

|1− az|2
dm(z).

The assertion follows by letting |a| → 1−. �
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9. Hardy spaces

For 0 < p < ∞, the Hardy space H
p consists of those f ∈ H(D) for which

�f�
p

Hp = sup
0≤r<1

1

2π

� 2π

0
|f(reiθ)|p dθ < ∞.

Proof of Theorem 4. The case p = 2 follows from the Littlewood-Paley identity by stan-
dard estimates, and if k = 1 then much more is true, see [26].

The following arguments rely on the representation (5.3) and on an application of the
non-tangential maximal function (5.4). For z ∈ D, let I(z) = {ζ ∈ T : z ∈ Γ(ζ)} and note
that its Euclidean arc length satisfies |I(z)| � 1− |z|2 for z ∈ D.

(i) We proceed to prove the following preliminary estimate. If 0 < p < 2, k ∈ N and
0 < r < 1, then

�fr�
p

Hp �
�

D
|fr(z)|

p−2
|f

(k)
r (z)|2(1− |z|

2)2(k−1)+1
dm(z) +

�
k−1�
j=0

|f (j)(0)|p
�2/p

�fr�
2−p

Hp

(9.1)

for all f ∈ H(D), f �≡ 0. Write dµr(z) = |f
(k)
r (z)|2(1−|z|2)2(k−1)

dm(z) for short. Fubini’s
theorem and Hölder’s inequality (with indices 2/(2− p) and 2/p) yield

�fr�
p

Hp �

�

T

��

Γ(ζ)
dµr(z)

� p
2

|dζ|+
k−1�

j=0

|f
(j)
r (0)|p

≤

�

T
f
�

r (ζ)
(2−p) p2

��

Γ(ζ)
|fr(z)|

p−2
dµr(z)

� p
2

|dζ|+
k−1�

j=0

|f
(j)(0)|p

≤

��

T
f
�

r (ζ)
p
|dζ|

� 2−p
2

��

T

�

Γ(ζ)
|fr(z)|

p−2
dµr(z)|dζ|

� p
2

+
k−1�

j=0

|f
(j)(0)|p

� �fr�
p(1− p

2 )
Hp

��

D
|fr(z)|

p−2(1− |z|
2) dµr(z)

� p
2

+
k−1�

j=0

|f
(j)(0)|p,

where the last inequality follows from [11, pp. 55–56]. Estimate (9.1) follows by re-
organizing the terms.

By a change of variable, we get
�

D
|fr(z)|

p−2
|f

(k)
r (z)|2(1− |z|

2)2(k−1)+1
dm(z)

≤

�

D
|f(z)|p−2

|f
(k)(z)|2

�
1− |z|

2
�2k−1

dm(z). (9.2)

By means of (9.1) we conclude that, if (9.2) is finite then f ∈ H
p and

�f�
p

Hp �
�

D
|f(z)|p−2

|f
(k)(z)|2

�
1− |z|

2
�2k−1

dm(z) +

�
k−1�
j=0

|f (j)(0)|p
�2/p

�f�
2−p

Hp

. (9.3)

Cauchy’s integral formula, and the estimate |f(z)| � �f�Hp(1 − |z|2)−1/p for z ∈ D [8,
p. 36], give |f (j)(0)|2 � �f�

2−p

Hp · |f (j)(0)|p for j = 0, 1, . . . , k − 1, which implies

� k−1�

j=0

|f
(j)(0)|p

�2/p

�
k−1�

j=0

|f
(j)(0)|2 � �f�

2−p

Hp

k−1�

j=0

|f
(j)(0)|p. (9.4)

Now (9.3) and (9.4) prove (2.9).
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(ii) Let 2 < p < ∞. We may assume that f ∈ H
p, for otherwise there is nothing to

prove. Write q = p− 2 and dµ(z) = |f (k)(z)|2(1− |z|2)2(k−1)+1
dm(z), for short. Fubini’s

theorem, Hölder’s inequality (with indices p/q and p/(p− q)) and [11, pp. 55–56] yield
�

D
|f(z)|q dµ(z) �

�

D

��

I(z)
|dζ|

�
|f(z)|q

1− |z|2
dµ(z) =

�

T

�

Γ(ζ)

|f(z)|q

1− |z|2
dµ(z) |dζ|

≤

��

T
f
�(ζ)p |dζ|

� q
p




�

T

��

Γ(ζ)

dµ(z)

1− |z|2

� p
p−q

|dζ|





p−q
p

� �f�
p−2
Hp




�

T

��

Γ(ζ)
|f

(k)(z)|2(1− |z|
2)2(k−1)

dm(z)

� p
2

|dζ|





2
p

� �f�
p−2
Hp

�
�f�

p

Hp −

k−1�

j=0

|f
(j)(0)|p

� 2
p

� �f�
p

Hp ,

and the assertion of (ii) follows.
(iii) If f ∈ H(D) is uniformly locally univalent, then supz∈D |f ��(z)/f �(z)| (1 − |z|2) is

bounded by a constant depending on δ [39, Theorem 2]. Here 0 < δ ≤ 1 is a constant
such that f is univalent in each pseudo-hyperbolic disc ∆(z, δ) for z ∈ D. Since

�
f
(k)

f �

��
=

f
(k+1)

f � −
f
��

f � ·
f
(k)

f � , k ∈ N,

we conclude �f (k+1)
/f

��H∞
k

< ∞ for k ∈ N by induction. By means of the Hardy-Stein-
Spencer formula, we deduce

�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z)

�
����
f
(k)

f �

����
2

H
∞
k−1

�

D
|f(z)|p−2

|f
�(z)|2 log

1

|z|
dm(z) � �f�

p

Hp ,

where the comparison constant depends on δ and p. This completes the proof of Theo-
rem 4. �
9.1. A class of functions for which Question 1 has an affirmative answer. If

f ∈ H(D) is non-vanishing, then g = f
(p−2)/2

f
� ∈ H(D) and g

� = p−2
2 f

p−4
2 (f �)2+ f

p−2
2 f

��.
The Hardy-Stein-Spencer formula (2.7) implies

�f�
p

Hp ≤ |f(0)|p + C1 p
2
�

D
|g(z)|2(1− |z|

2) dm(z), (9.5)

where 0 < C1 < ∞ is an absolute constant. By standard estimates, there exists another
absolute constant 0 < C2 < ∞ such that

�

D
|g(z)|2(1− |z|

2) dm(z) ≤ C2

�
|g(0)|2 +

�

D
|g

�(z)|2(1− |z|
2)3 dm(z)

�
.

By (9.5), we deduce

�f�
p

Hp ≤ |f(0)|p + C1C2 p
2

����
f
�

f

����
2−p

H
∞
1

|f
�(0)|p + 2C1C2 (p− 2)2

����
f
�

f

����
2

H
∞
1

�f�
p

Hp

+ 2C1C2 p
2
�

D
|f(z)|p−2

|f
��(z)|2(1− |z|

2)3 dm(z).

In conclusion, if f ∈ H(D) is non-vanishing and �f �
/f�H∞

1
= �log f�B is sufficiently

small, then (2.8) holds with C(p) � p
2 as p → 0+.
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9.2. Applications to differential equations. Theorem 4 induces an alternative proof
for a special case of [35, Theorem 1.7]).

Theorem A. Let 0 < p ≤ 2 and A ∈ H(D). If (4.1) is sufficiently small (depending

on p), then all solutions of (1.2) belong to H
p
.

Proof. Note that

lim sup
r→1−

sup
a∈D

�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (9.6)

is at most a constant multiple of (4.1); compare to the proof of Theorem 3. Let f be
a solution of (1.2). By Theorem 4(i), we deduce

�fr�
p

Hp �
�

D
|fr(z)|

p−2
r
2
|f

��(rz)|2(1− |z|
2)3 dm(z) + |f(0)|p + |f

�(0)|p

�
�

D
|fr(z)|

p
|A(rz)|2(1− |z|

2)3 dm(z) + |f(0)|p + |f
�(0)|p.

If (9.6) is sufficiently small, then Carleson’s theorem [8, Theorem 9.3] implies that �fr�Hp

is uniformly bounded for all sufficiently large 0 < r < 1. By letting r → 1−, we obtain
f ∈ H

p. �
An argument similar to the one above, taking advantage of Theorem 4(i), leads to

a characterization of Hp solutions of (1.2): if 0 < p ≤ 2, f is a solution of (1.2) and
dµA(z) = |A(z)|2(1− |z|2)3 dm(z) is a Carleson measure, then f ∈ H

p if and only if
�

D
|f(z)|p dµA(z) < ∞. (9.7)

For example, if f is a normal (in the sense of Lehto and Virtanen) solution of (1.2) and
µA is a Carleson measure, then (9.7) holds for all sufficiently small 0 < p < ∞ by [14,
Corollary 9].

Remark 5. If Question 1 had an affirmative answer, then Theorem A would admit the
following immediate improvement: if A ∈ H(D) such that (4.1) is finite, then all solutions
of (1.2) belong to

�
0<p<∞H

p.
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Abstract. We study the spectral and temporal coherence effects in the passage
of a Gaussian Schell-model (GSM) scalar, plane-wave pulse train through a slab
of nonlinear optical crystal exhibiting second-harmonic generation. We show that
due to the nonlinear interaction the temporal and spectral degrees of coherence of
the fundamental (F) and second-harmonic (SH) pulse trains at the exit facet may
deviate markedly from the GSM and the global degree of coherence of the SH
wave generally decreases with increasing incident F beam intensity. In addition,
we find that due to the partial coherence of the incident GSM field the transmitted
SH wave may show a double-peaked intensity distribution.
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1. Introduction

Coherent pulse trains of light, with each individual
pulse having the same wave form, have significant ap-
plications in probing and manipulation of atoms and
molecules, precision frequency metrology, telecommu-
nications, micromachining, etc [1, 2]. However, any
pulse-to-pulse variations in the pulse train render the
averaged field to be partially coherent in both spectral
and temporal domains [3], which necessitates a sta-
tistical analysis based on the second-order coherence
theory of light. This involves concepts such as the two-
frequency cross-spectral density (CSD) in the spectral
domain and the two-time mutual coherence function
(MCF) in the temporal domain. A great number of
models [4] have been developed to describe spectrally
and temporally partially coherent beams of pulsed light
since the importance of the subject was recognized
[5–7]. Recently, the field has expanded to cover the
pulse trains especially in the contexts of supercontin-
uum (SC) light [8–10] and free-electron lasers [11–14].

In general, the effect of pulse train coherence of
the incident (pump) beam on the various nonlinear
material interactions has not been widely considered.
For instance, in all studies on SC generation with
photonic crystal fibers or bulk materials [15], coherent
input illumination (with quantum noise) has always
been taken. In this paper we will lift this assumption
by letting the illuminating field be inherently partially
coherent and investigate the ensuing effects on the
interaction of pulse trains with nonlinear media.

A particularly important nonlinear optical effect is
second-harmonic generation (SHG), with applications
in, e.g., spectroscopy and remote sensing [16].
Previous studies concerning coherence and SHG relate
to the SHG efficiency [17–19] and the influence
of incoherence on the produced spectrum [20, 21].
Recently, the spatial coherence properties of the
involved fundamental (F) and second-harmonic (SH)
waves were considered in the context of stationary
fields whose spectral components are necessarily
uncorrelated [22].

In this work, we analyse the effect of spectral
and temporal partial pulse-train coherence on SHG in
a slab of optically nonlinear material. The incident
field is taken to be a Gaussian Schell-model (GSM)
plane-wave pulse train whose spectral (and temporal)
coherence width to pulse width ratio is kept fixed and
the peak intensity varied. We demonstrate that the

nonlinear interaction renders the transmitted F and
SH waves different from the GSM. Further, increasing
the peak intensity of the incident beam decreases
the overall (global) spectral and temporal degrees of
coherence of the SH field and in some cases emerges a
two-peaked temporal intensity profile.

The structure of this work is as follows. In Sec. 2
we introduce the concepts of optical coherence theory
which are relevant for this work, while in Sec. 3 the
GSM pulse trains are described. In Sec. 4 the spectral
and temporal coherence properties of the F and SH
pulse trains transmitted through an SHG material slab
are assessed. Finally, Sec. 5 summarizes the main
results. In addition, Appendix A contains a derivation
of the coupled wave equations related to the SHG and
describes the Runge–Kutta method for their solution.

2. Description of pulse-train coherence

We begin by recalling the relevant concepts of the
scalar-field coherence theory in the spectral and
temporal domains. The CSD function W (ω1, ω2)
measures correlations between two angular frequencies
ω1 and ω2 and is defined as an average over scalar
electric field realizations E(ω), via [23]

W (ω1, ω2) = 〈E∗(ω1)E(ω2)〉, (1)

where the asterisk denotes complex conjugation and
the angle brackets ensemble averaging. As is
customary the realizations are expressed in terms of
complex analytic signals. In the context of pulse trains
the realizations correspond to the individual pulses
and in numerical computations a finite (large) number
N of them is included in the average. By setting
ω1 = ω2 = ω one attains the average spectral density
S(ω) which can further be used to normalize the CSD
and define the complex degree of spectral coherence

µ(ω̄,∆ω) =
W (ω̄,∆ω)√

S(ω̄ −∆ω/2)S(ω̄ + ∆ω/2)
, (2)

where we have used average ω̄ = (ω1 + ω2)/2 and
difference ∆ω = ω2 − ω1 coordinates. In a similar
fashion, one can investigate the correlations in the
temporal domain by employing the Fourier transform

E(t) =

∫ ∞
0

E(ω) exp(−iωt)dω, (3)

on every realization and then averaging to obtain the
two-time MCF

Γ(t1, t2) = 〈E∗(t1)E(t2)〉. (4)
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One may normalize the MCF by the average intensity
I(t) = Γ(t, t) and get the temporal degree of coherence
that reads in the average t̄ = (t1 + t2)/2 and difference
∆t = t2 − t1 coordinates as

γ(t̄,∆t) =
Γ(t̄,∆t)√

I(t̄−∆t/2)I(t̄+ ∆t/2)
. (5)

In many cases the degree of coherence is not constant
over the pulse and a more practical way to quantify
the coherence state of a pulse train is to use the overall
degree of coherence. In the spectral and temporal
domains the square of this quantity reads, respectively,
as [7]

µ̄2 =

∫∞
−∞

∫∞
0
|W (ω̄,∆ω)|2dω̄d∆ω∫∞

−∞
∫∞
0
S(ω̄ −∆ω/2)S(ω̄ + ∆ω/2)dω̄d∆ω

, (6)

γ̄2 =

∫∞
−∞

∫∞
−∞ |Γ(t̄,∆t)|2dt̄d∆t∫∞

−∞
∫∞
−∞ I(t̄−∆t/2)I(t̄+ ∆t/2)dt̄d∆t

. (7)

These parameters obey µ̄ = γ̄ and 0 ≤ µ̄, γ̄ ≤ 1.
Additional physical insight into the properties of a

pulse train is obtained by investigating the coherence
width to pulse width ratio. First, one may use the
second moment to assess the effective spectral width,
σs, as

σ2
s =

∫∞
0

(ω − ω0)2S(ω)dω∫∞
0
S(ω)dω

, (8)

ω0 =

∫∞
0
ωS(ω)dω∫∞

0
S(ω)dω

. (9)

Second, we define an integrated measure for the degree
of spectral coherence

µint(ω̄) =

∫ ∞
−∞

µ(ω̄,∆ω)d∆ω, (10)

and introduce the spectral density weighted effective
coherence width

Σµ =

∫∞
0
|µint(ω)|S(ω)dω∫∞
0
S(ω)dω

. (11)

This formula emphasizes the degree of coherence at
frequencies with significant spectral density. The
width ratio Σµ/σs then is a measure for the extent
of correlations within the spectral band of the field. In
a similar fashion one could define the effective pulse
duration, the effective coherence time, and their ratio
in the time domain. Width ratios defined in this
way offer more intuitive information on the coherence
characteristics of the field than the overall quantities
µ̄ and γ̄, at least in the sense that they can be seen as
extensions of the width ratios into fields that are not
of GSM type.

3. Gaussian Schell-model pulse trains

The GSM pulse trains constitute a special type of fields
whose spectral density and degree of coherence are
Gaussian functions and the latter depends only on the
separation ∆ω of the two frequencies. The CSD of a
GSM plane-wave pulse train propagating along the z
axis has (at z = 0 plane) the form [7]

W (ω̄,∆ω)

= S0 exp

[
− (ω̄ − ω0)2

2σ2
s

− 1

2

(
1

4σ2
s

+
1

σ2
µ

)
∆ω2

]
, (12)

where S0 is the peak spectral density and σµ
characterizes the spectral coherence width. The
spectral density is given by

S(ω) = S0 exp

[
− (ω − ω0)2

2σ2
s

]
, (13)

whereas the degree of coherence defined in Eq. (2) is

µ(∆ω) = exp

(
−∆ω2

2σ2
µ

)
. (14)

Thus the parameters σs and σµ are the (normalized)
r.m.s. widths of the spectrum and spectral coherence,
respectively, associated with a pulsed GSM-type field.
The width σs is consistent with Eq. (8) while Σµ of
Eq. (11) satisfies Σµ =

√
2πσµ.

Using Eqs. (1), (3), and (4) together with Eq. (12)
one finds that the MCF of a GSM pulse train is

Γ(t̄,∆t) = I0 exp

[
− t̄2

2T 2
− 1

2

(
1

4T 2
+

1

T 2
c

)
∆t2

]
× exp(−iω0∆t), (15)

where I0 = 4πS0σµσ
2
s (σ2

µ + 4σ2
s )−1/2. The average

intensity and the complex degree of temporal coherence
are therefore given by

I(t) = I0 exp

(
− t2

2T 2

)
, (16)

γ(∆t) = exp

(
−∆t2

2T 2
c

)
exp(−iω0∆t), (17)

where

T = (σ2
µ + 4σ2

s )1/2/2σsσµ, (18)

Tc = σµT/σs, (19)

are the average pulse duration and the coherence time,
respectively.

The CSD function in Eq. (12) admits a coherent-
mode decomposition which in ω1, ω2 coordinates reads
as

W (ω1, ω2) =

∞∑
m=0

αmψ
∗
m(ω1)ψm(ω2), (20)

where αm and ψm(ω) are, respectively, the eigenvalues
and the orthonormal eigenfunctions of a homogeneous
Fredholm integral equation with the CSD as a kernel
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[23]. For a GSM pulse train the eigenfunctions are
Hermite-Gaussian (HG) functions [7]

ψm(ω) =
1√

2mm!

(
2e

π

)1/4

Hm

[√
2e(ω − ω0)

]
× exp[−e(ω − ω0)2], (21)

where Hm(ω) are Hermite polynomials, e = (a2 +
2ab)1/2, a = 1/4σ2

s , and b = 1/2σ2
µ. The weights are

given by

αm = S0

(
π

a+ b+ e

)1/2(
b

a+ b+ e

)m
. (22)

We notice that the eigenfunctions and eigenvalues are
real for a GSM beam (at the waist).

4. Effects of SHG on the coherence properties

In the following, we apply the above formalism to
analyse the spectral and temporal coherence properties
of the F and SH pulse trains at the output of a slab of
nonlinear optical material exhibiting SHG.

4.1. Parameters of the SHG slab and the incident field

The slab has a thickness of L = 15 µm and an infinite
transverse extent. We remark that thin films with a few
micrometer (or even less than wavelength) thicknesses
and supporting SHG have been employed in the
context of epsilon-near-zero (ENZ) materials [24], two-
dimensional atomic crystals [25], and ultrashort pulses
[26]. We take the refractive index to be n = 1.6 for
both F and SH waves. This choice together with the
short propagation distance conforms to phase matching
of the waves. Furthermore, the nonlinear coupling
coefficient (susceptibility in contracted notation) is
chosen as d = 2.0 pm/V. The entrance facet of
the slab is set to be at the z = 0 plane and is
illuminated by a GSM pulse train whose average
spectrum, given in Eq. (13), is centered at ω0 = 3.142
rad/fs (corresponding to the wavelength of 600 nm)
and has the r.m.s. width of σs = 0.010 rad/fs.

Throughout the work we choose the spectral
coherence width in Eq. (14) as σµ = 0.7σs. The
pulse train therefore is spectrally rather (but not
fully) coherent, and a few lowest-order modes dominate
the coherent-mode decomposition of Eq. (20). More
specifically, the ratios of the four lowest-order
eigenvalues are given by α1/α0 ≈ 0.50, α2/α0 ≈ 0.25,
and α3/α0 ≈ 0.13. Hence, the energy of an individual
realization is distributed essentially among a few lowest
order modes. The modes with m = 1, 2, 3 possess
amplitude peaks symmetrically around the center and
this feature reflects (also after the mode-construction
procedure described in Sec. 4.2) in the spectral and
temporal realizations which have high-amplitude peaks
(nonsymmetrically) on both sides of the center of

average pulse. Further, equations (18) and (19)
indicate, respectively, that the average temporal length
of the pulse train is T = 151 fs and the coherence
time is Tc = 0.7T . In the numerical computations
that follow, all coherence widths are fixed but the peak
spectral density S0 of the incident GSM pulse train
varies.

4.2. Construction and propagation of realizations

We represent the GSM field by an ensemble of N =
500 realizations (pulses), each of which is transmitted
through a slab of nonlinear optical crystal. We checked
that this number ensures the convergence of the results.
The procedure for generating the ensemble is analogous
to that described in [22] in the spatial domain. In short,
a realization is expressed in terms of the HG modes in
Eq. (21) with random coefficients and they are required
to lead to the coherent-mode representation of Eq. (20).
It follows that the relative weights of the HG modes
constituting a realization are approximately given by√
αm/α0, showing that in the arrangement considered

in this work the three lowest order HG modes (with
random phases) are dominant. However, we included
the 50 lowest-order modes in the computations in order
to ensure accuracy. We remark that several different
ensembles can be generated which all represent the
same incident GSM field. The various ensembles
composed of different realizations then lead to different
sets of the F and SH field realizations at the output
which, in principle, can display distinct coherence
properties for a field at the exit facet. We analysed this
feature and found that the various ensembles effectively
imply the same results if the number of realizations N
is large and the value N = 500 that we use is sufficient.
The analogous property but with spatial domain fields
was assessed in [22].

Propagation of the F and SH pulses in a material
slab is governed by the electromagnetic wave equations
with nonlinear source polarizations corresponding to
the SHG. These formulas are given in Eq. (A.1)
of Appendix A. The nonlinear material interaction
couples the two fields and induces energy transfer
between them on propagation. We assume that the
fields are linearly polarized in the same direction.
Consequently, the F and SH fields obey the scalar
wave equations, Eqs. (A.5) and (A.6), respectively,
where the material interaction is specified by the
susceptibility d. The coupled scalar-field wave
equations are solved with the Runge–Kutta (RK)
algorithm. The development of the wave equations,
underlying assumptions, and the RK method are
described in Appendix A.

Figure 1 exemplifies, in the case of
√
S0 =

2.6 GV/m, the average spectral densities (thick red and
blue curves) of (a) the incident GSM pulse train and
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Figure 1. Illustration of typical spectral and temporal F and
SH field realizations and the average spectral densities as well as
intensities involved in SHG: (a,d) incident GSM pulse train, (b,e)
transmitted F field, and (c,f) transmitted SH field. The thick red
and blue curves refer to the average quantities whereas the thin
black curves correspond to a single realization. The incident-
field and slab parameters are σs = 0.010 rad/fs, σµ = 0.7σs,√
S0 = 2.6 GV/m, L = 15 µm, and d = 2.0 × 10−12 m/V.

The average spectral densities and temporal intensities have been
normalized by the maximum value of the corresponding incident
field quantity.

the related transmitted (b) F, and (c) SH waves. The
thin black curves refer to a single (typical) realization.
The nonlinear crystal couples the F and SH pulses and
transfers energy from the high-amplitude parts of an
F realization to an SH realization. This is evident in
Fig. 1 where in (c) the two amplitude peaks are located
at frequencies which are two times larger than the
frequencies of the two strongest F amplitude peaks in
(a). As seen in (b) the amplitude of the F pulse at the
corresponding locations has decreased in transmission.

A similar effect takes place at the small side lobe on
the left but the relative amount of transferred energy
is smaller since the nonlinear material interaction is
weaker at smaller field strengths. As expected, also the
average spectral densities (thick curves) follow similar
trends. We observe that the spectral density of the
SH pulse train is centered exactly at 2ω0 whereas
its width is larger than that of the incident pulse
train (note the different frequency scales in the figure).
By using Eq. (8), the widths of the average spectra
of the transmitted F and SH fields are found to be
σs = 0.011 rad/fs and σs = 0.016 rad/fs, respectively.
Their ratios to the spectral width of the incident field
are hence 1.1 and 1.6, respectively, which indicate that
both spectra are (effectively) wider than the incident
one. The width values are strongly affected by the
shape of the average spectrum which for both output
fields deviate slightly from Gaussian showing that
neither of them is a GSM pulse train.

Figures 1(d)–(f) show the temporal intensities
related to the spectra in Figs. 1(a)–(c) obtained by
Fourier transforming the individual realizations in
terms of Eq. (3). The average intensities in (e)
and (f) are centered at t = 80 fs corresponding
to the propagation time through the slab. Part
(f) demonstrates an important feature of two-peak
formation in the average intensity which will be
discussed in connection with Fig. 2(b).

4.3. Effect of SHG on intensity

Figure 2 depicts the distributions of the average
temporal intensities of the transmitted (a) F and (b)
SH pulse trains as a function of the peak amplitude√
S0 of the incident field for the same parameters as

used in Fig. 1. As an example, in the case of
√
S0 =

2.6 GV/m (indicated by the dashed vertical line), the
temporal r.m.s. widths of the incident F, transmitted
F, and transmitted SH pulse trains are 151 fs,
149 fs, and 115 fs, respectively. The corresponding
transmitted-to-incident pulse length ratios are 0.99 (F)
and 0.76 (SH). A striking feature is seen in the shape
of the SH pulse train in (b) where the intensity is
double-peaked within the interval 2 GV/m .

√
S0 .

15 GV/m. This effect of dual-peak formation in the
SH wave train is related to partial coherence of the
incident GSM pulse train. More precisely, as pointed
out in Sec. 4.1, the strongest amplitude peaks of a
random-shaped temporal realization of the incident
partially coherent field locate on the both sides of
the center of the average pulse [see Fig. 1(d)]. As
the realization propagates, SHG is strongest at the
peak positions resulting in an SH realization whose
intensity maxima are likewise located at both sides
of the center [see the black curve in Fig. 1(e)]. This
feature is reflected to the average SH pulse which is
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Figure 2. Average temporal intensities of the (a) F-wave and
(b) SH-wave pulse trains at the output facet of the nonlinear
material slab as a function of the incident GSM pulse train’s peak
amplitude. Otherwise the parameters of the incident field and
the slab are as in Fig. 1. The dashed vertical line marks the case
of
√
S0 = 2.6 GV/m and the distributions have been normalized

by I0. The intensity distributions are centered at t = 80 fs
(indicated by the dashed horizontal line) which corresponds to
the propagation time through the slab. The rectangle in (a)
emphasizes the region where the energy transfer from the SH
wave back to the F field is strongest.

two-peaked. Further, the two-peak structure of the
SH beam vanishes if the incident pulse train is fully
coherent (all pulses are identical and Gaussian). Thus,
adjusting the partial coherence of the incident pulse
train (ratio of σs and σµ) may allow to tailor the
average temporal shape of the train via a nonlinear
material interaction. We further observe that, above√
S0 ≈ 15 GV/m, a significant amount of energy

transfers back to the F wave. The region where the
effect is strongest is highlighted by the rectangle.

4.4. Effect of SHG on temporal and spectral coherence

Next we consider the global coherence properties of the
transmitted F and SH pulse trains. The overall degrees
of coherence are shown in Fig. 3(a) as a function of√
S0. For reference, we illustrate in Fig. 3(b) typical

F and SH realisations for the
√
S0-values of 15 and 22

GV/m in the columns from left to right, respectively.
From (a) we see that the coherence of the F pulse
train decreases rapidly when the peak amplitude
of the incident F wave is below 10 GV/m. This
behaviour is related to the decrease of the strongest
peaks in the F realizations in slab transmission as
explained in connection with Fig. 1. The weakening
of peaks, originating from the nonlinear interaction,
levels the strength differences of the amplitude maxima
in the realizations and hence increases the number
of dominant peaks. This is observed in the black
curve of Fig. 1(b). Consequently, the transmitted F
pulses with increased structural complexity represent
a field with decreased overall degree of coherence.
Below 10 GV/m the overall degree of coherence of
the SH wave is almost constant since the generated
realizations are rather simple in shape as indicated
by the black curve of Fig. 1(c). When the incident
peak amplitude of the F wave exceeds 10 GV/m, a
significant amount of energy transfers from the SH field
back to the F wave on propagation. In particular, the
general behaviour of the realizations above 10 GV/m
is opposite to that below this level. More precisely,
the energy transfer is strongest at the locations of
the highest peaks of the SH realizations levelling the
strength differences of the peaks [see the lower left
plot in 3(b)]. Consequently, the degree of coherence
decreases rapidly within 10 GV/m .

√
S0 . 17 GV/m.

We verified numerically that in this interval the F
realizations take simpler forms, with essentially a single
dominant peak [see the upper left figure in 3(b)],
and hence the degree of coherence increases. Above
17 GV/m the energy transfer process between the F
and SH waves is again reversed. In addition, the level
of coherence decreases in both waves as indicated by
the increased number of peaks in the realizations of the
right column of (b). We remark that the above effects
were found for a chosen L-value and with thicker slabs
the effects would occur at lower incident intensities.

Besides the overall degree of coherence, an
illustrative measure for the range of correlations
(coherence) within the pulse train is the coherence
width to pulse width ratio, Σµ/σs, which can be
obtained from Eqs. (8) and (11). This ratio for the
transmitted F and SH pulses is shown in Fig. 3(b) with
red and blue curves, respectively. The main features
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transmitted F (red curves) and SH (blue curves) pulse trains as
a function of the incident GSM pulse train’s peak amplitude.
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(µ̄ = γ̄), (b) the spectra of typical F and SH realizations for√
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right, and (c) coherence width to pulse width ratio. Apart from
varying S0 the parameters of the incident field and the slab are
as in Fig. 1. The curves in (b) have been normalized by S0.
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Figure 4. Distributions of the magnitudes of the degrees of
coherence in (a) the spectral domain and (b) the temporal
domain, of the transmitted SH field. The various geometry
parameters are as in Fig. 1. The dashed line marks the location
t̄ = 80 fs which corresponds to the propagation time through the
slab. In the center region the spectral and temporal coherences
are modulated in the ∆ω and ∆t directions, respectively, with
minima at ∆ω = ±0.016 rad/s and ∆t = ±102 fs.

are the same as in (a). At this stage we summarize by
noting that, within the considered amplitude range, the
global coherence of the SH wave generally decreases at
the exit facet whereas that of the F field oscillates with
increasing incident field intensity.

Figures 4(a) and 4(b) show the spectral and
temporal degrees of coherence, respectively, for the
transmitted SH pulse train at

√
S0 = 2.6 GV/m.

In the vicinity of ω̄ = 2ω0 = 6.284 rad/fs the SH
field deviates from the GSM type, for which the
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magnitude of the degree of coherence would be a
horizontal bar in the average and difference frequency
coordinates. At ω̄ = 2ω0 the degree exhibits a
modulation in the ∆ω direction with minima at ∆ω =
±0.016 rad/s. A similar modulation effect as shown
here for the SH field exists also in the transmitted F
pulse train. In general, Fig. 4(a) demonstrates that
for the transmitted SH field the spectral correlations
around the center frequency extend farther than in the
edge regions of the spectrum.

Also the temporal degree of coherence exhibits
modulation as seen in Fig. 4(b). More precisely, the
degree is modulated in the ∆t direction close to t̄ =
80 fs (dashed line), which corresponds to the time of
propagation through the slab, and assumes minimum
value at ∆t = ±102 fs. An essential feature is that the
temporal degree of coherence deviates from the GSM
form, for which the distribution would be horizontal
bar whose width is specified by the temporal coherence
width. In particular, close to t̄ = 80 fs, the temporal
correlations extend farther that in the tail parts.

Figure 4 illustrates the particular case of
√
S0 =

2.6 GV/m, for which the intensity distribution exhibits
the double-peak structure shown in Fig. 2. If the
incident amplitude

√
S0 is increased the modulation

of the spectral and temporal degrees of coherence
in Fig. 4 vanishes and the degrees become narrower
around ω̄ = 2ω0 and t̄ = 80 fs, respectively. This
decreases the SH overall degrees of coherence in the
two domains at high

√
S0 values as observed in Fig. 3

above 10 GV/m.

5. Conclusions

As a summary, we considered an incident scalar, GSM
plane-wave pulse train and evaluated the spectral and
temporal coherence properties of the F and SH waves
at the output facet of an optical crystal exhibiting
SHG when the GSM peak amplitude was varied.
Throughout the work the spectral (and temporal)
coherence width to pulse width ratio of the incoming
field was fixed at 0.7 indicating the we considered
a rather coherent pulse train. We found that both
transmitted beams, in general, may deviate essentially
from the GSM as the correlation lengths within the
pulse spectrum and temporal intensity vary. Further,
the global degree of coherence of the F field at the
output oscillates while that of the SH wave decreases
with increasing incident intensity. We also found that
for some input beam intensities partial coherence of the
incident field induces a two-peak temporal intensity
distribution for the SH field. The results of this
work demonstrate that when SHG with a partially
coherent pulse train is employed to produce light at
frequencies which are not directly available or where

efficient detectors exists the coherence properties may
have a significant effect on the characteristics of the SH
field.
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Appendix A. Coupled wave equations for the
F and SH waves

We first derive the coupled wave equations for the
fundamental (F) and the second-harmonic (SH) plane-
wave pulse fields that govern their propagation in
a material exhibiting second-harmonic generation.
Along the derivation we highlight the underlying
assumptions. At the end, we describe the Runge–
Kutta (RK) method that was employed to solve the
two equations.

As the F and SH light fields propagate their am-
plitudes are coupled by the induced nonlinear polar-
ization. In general, the fields require electromagnetic
treatment and hence we denote the electric fields of the
F and SH spectral pulses by E1(r, ω1) and E2(r, ω2),
respectively. Notice that the angular frequencies ω1

and ω2 refer to the F and SH waves and they should not
be confused with the frequency arguments of the CSD
in the main text. Both fields are plane-wave pulses
and we set them to propagate along the z axis. We as-
sume that the medium is homogeneous, nonmagnetic,
contains no free charges and currents, and its linear re-
sponse is local and isotropic with negligible dispersion.
The behaviours of the two fields are in the spectral
domain governed by the inhomogeneous wave equa-
tions [16]

∇×∇×Em(r, ωm)− k2mEm(r, ωm)

= µ0ω
2
mP(NL)

m (r, ωm), m = (1, 2), (A.1)

where r refers to a point in space, km = nωm/c is the
wave number at angular frequency ωm with c being
the vacuum speed of light, and µ0 is the vacuum
permeability. In addition, n is the refractive index
which is set independent of frequency due to weak

dispersion. Moreover, P
(NL)
m (r, ωm) is the nonlinear

(source) polarization at frequency ωm, whose i = (x, y)
component generally reads as

P
(NL)
mi (r, ωm)

= ε0
∑
jk

χ
(2)
ijk(ωm, ωa, ωb)Ej(r, ωa)Ek(r, ωb), (A.2)

where χ
(2)
ijk(ωm, ωa, ωb) is the second-order nonlinear

susceptibility with ωm = ωa + ωb. The quantities
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Ej(r, ωa) and Ek(r, ωb), with (j, k) = (x, y), represent
the Cartesian field components at frequencies ωa and
ωb. For the SH field ωm = ω2, ωa = ωb = ω1 while for
the F wave ωm = ω1, ωa = ω2, and ωb = −ω1 hold.

Next we take both fields to be linearly polarized in
the x direction reducing the problem to a scalar-field
case conforming to the theory of the main text. The
source polarizations for the F and SH fields in Eq. (A.2)
take the respective forms

P
(NL)
1 (r, ω1)

= 2ε0χ
(2)
xxx(ω1, ω2,−ω1)Ex(r, ω2)E∗x(r, ω1), (A.3)

P
(NL)
2 (r, ω2) = ε0χ

(2)
xxx(ω2, ω1, ω1)E2

x(r, ω1). (A.4)

In Eq. (A.3) we used the intrinsic permutation
symmetry of the susceptibility and the property
Ex(r,−ω1) = E∗x(r, ω1). Assuming the Kleinmann
symmetry condition and invoking the contracted

notation χ
(2)
xxx(ω2, ω1, ω1) = 2d11 = 2d, enables to

develop the two wave equations in Eq. (A.1) into the
form

∂2E1(z, ω1)

∂z2
+ k21E1(z, ω1)

= −4
ω2
1d

c2
E∗1 (z, ω1)E2(z, ω2), (A.5)

∂2E2(z, ω2)

∂z2
+ k22E2(z, ω2) = −2

ω2
2d

c2
E2

1(z, ω1). (A.6)

Here we also used the fact that ∇ · Em(r, ωm) = 0
holds for both m = (1, 2) since the fields are plane-
wave pulses. In addition, we employed the invariance
of the fields in the transverse direction and some basic
properties of the nonlinear susceptibility. Notice that
the reduction to the scalar-field case requires that the
medium is such that d11 is the only significant element
of the material’s d matrix.

The numerical procedure of the F and SH
wave propagation is based on the RK method [27]
and is as follows. We first write Em(z, ωm) =
Am(z, ωm) exp (ikmz), m = (1, 2), and assume that the
waves are phase matched obeying ∆k = k2 − 2k1 = 0.
Equations (A.5) and (A.6) thus transform into

∂2A1(z, ω1)

∂z2
+ 2ik1

∂A1(z, ω1)

∂z

= −4
ω2
1d

c2
A∗1(z, ω1)A2(z, ω2), (A.7)

∂2A2(z, ω2)

∂z2
+ 2ik2

∂A2(z, ω2)

∂z

= −2
ω2
2d

c2
A2

1(z, ω1). (A.8)

Next we introduce a new variable A′m(z, ωm) =
∂Am(z, ωm)/∂z which allows us to split the above pair
of equations as

∂A1(z, ω1)

∂z
= A′1(z, ω1), (A.9)

∂A′1(z, ω1)

∂z
= −2ik1A

′
1(z, ω1)

− 4
ω2
1d

c2
A∗1(z, ω1)A2(z, ω2), (A.10)

∂A2(z, ω2)

∂z
= A′2(z, ω2), (A.11)

∂A′2(z, ω2)

∂z
= −2ik2A

′
2(z, ω2)− 2

ω2
2d

c2
A2

1(z, ω1). (A.12)

This set of equations can be integrated with respect to
z in terms of the RK algorithm.

The accuracy of the RK method was verified
by COMSOL simulations which implied identical
results. We used a two-dimensional model in the
COMSOL analysis with the mesh element size down
to λ1/50. In brief, Eq. (A.1) at F and SH frequencies
are coupled and solved under two Electromagnetic
Waves, Frequency Domain (ewfd) interfaces [28].
Equations (A.3) and (A.4), respectively, are used to
set the Polarization node under each ewfd interface for
coupling the F and SH light fields.

We also point out that the commonly used slowly-
varying envelope approximation (SVEA) [16], which we
also tried in analogy with the spatial-domain analysis
in [22], failed to predict the transfer of power back
to the F wave after certain pump power levels (

√
S0

above 15 GV/m, see Fig. 2). We therefore resorted to
rigorous solutions of Maxwell’s equations by the RK
algorithm.
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gevičius V 2014 Generation of a second-harmonic beam
from incoherent conical beams Phys. Rev. A 89 043821

[22] Pesonen H, Halder A, Huusko J–M, Friberg A T, Setälä T
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Abstract. We consider the spectral spatial coherence characteristics of scalar
light fields in second-harmonic generation in an optically nonlinear medium.
Specifically, we take the fundamental-frequency (incident) field to be a Gaussian
Schell-model (GSM) beam with variable peak spectral density and different
coherence properties. We show that with increasing intensity the overall degree
of coherence of both the fundamental and the second-harmonic field in general
decreases on passage through the nonlinear medium. In addition, the spectral
density distributions and the two-point degree of coherence may, for both beams,
deviate significantly from those of the GSM, especially at high intensities.
Propagation in nonlinear medium is numerically analyzed with the Runge–Kutta
and the beam-propagation method of which the latter is found to be considerable
faster. The results of this work provide means to synthesize, via nonlinear material
interaction, random optical beams with desired coherence characteristics.
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1. Introduction

Optical coherence [1, 2] and nonlinear optics [3, 4]
are central research areas of modern optics. Both
topics are extensive but the influence of partial optical
coherence (temporal, spatial, or spectral) in nonlinear
light-matter interactions has been analyzed only in
a few specific cases. For example, in the context
of second-harmonic generation (SHG) the conversion
efficiency with an incident spatially [5] and temporally
[6] partially coherent beam as well as with astigmatic
beams [7] has been considered. Further, the spectral
properties of the second-harmonic field induced by
a Gaussian Schell-model (GSM) beam [8] and an
incoherent conical beam [9] have been investigated.
Other researches cover, e.g., the effect of an incoherent
pump beam in parametric amplification [10], spatial
coherence of local second-harmonic fields at rough
metal surfaces [11], pulse propagation in Kerr medium
[12], and supercontinuum coherence [13–15].

In this work, we assess, within the scalar-
field formalism, the coherence properties of the
second-harmonic field produced by a stationary GSM
beam in a nonlinear optical material. We use
the depleted (incident) beam model that takes into
account the effect of the nonlinear interaction on the
incident fundamental-frequency GSM beam. Hence,
besides the second-harmonic field, we also consider
the coherence changes in the fundamental-frequency
beam. The random GSM beam in front of the
crystal is represented by constructing an ensemble of
monochromatic (random-shaped) realizations. Each
realization is then propagated through the nonlinear
crystal one at a time using the Runge–Kutta (RK)
algorithm and the beam-propagation (BP) method
tailored for the present context. Both techniques
provide highly similar results, but the latter technique
is observed to be two orders of magnitude faster.
In general, the degrees of coherence of both the
fundamental and the second-harmonic wave are found
to decrease on passage through the crystal. The
origin of this effect is the second-harmonic creation
at the strongest peaks of the fundamental-wave
realizations which increases the structural complexity
in the realizations of both fields. The effect is
stronger for higher incident-field peak intensities
leading to fundamental and second-harmonic fields
whose coherence properties may deviate significantly
from the GSM. Nonlinear material response can

therefore be used to control and tailor the coherence
properties of random beams.

This work is organized as follows. In Sec. 2
the GSM beam and its propagation in a nonlinear
medium supporting SHG are described. Section 3 is
devoted to the numerical analysis of the coherence
effects taking place in SHG and Sec. 4 is a summary of
the main results. Several theoretical aspects have been
relegated to Appendices A-D. In A the construction of
an ensemble representing a GSM beam is described.
In B and C the RK and BP propagation methods,
respectively, are outlined and D evaluates the sufficient
number of realizations.

2. Second-harmonic generation with a
Gaussian Schell-model beam

In this section we introduce the relevant concepts
concerning the GSM beams and their propagation in a
nonlinear medium exhibiting SHG.

2.1. Gaussian Schell-model beams

The spatial coherence properties of a stationary scalar
light beam at points x1 and x2 in a plane z = z0 and at
frequency ω are described by the cross-spectral density
(CSD) function. The CSD can be defined as [1]

W (x1, x2, z0;ω) = 〈E∗(x1, z0;ω)E(x2, z0;ω)〉, (1)

where the asterisk denotes complex conjugation and
the angular brackets refer to ensemble averaging.
In addition, E(x, z0;ω) is a monochromatic field
realization representing a random electric field which
in this work is taken to be linearly polarized. Also
the field generated in nonlinear interaction is similarly
linearly polarized allowing a scalar treatment of all
fields. In this section, we drop the explicit frequency
and z dependencies for notational simplicity and
assume that the formulas are given at the entrance
facet of a nonlinear crystal. By setting x1 = x2 = x
we obtain the (average) spectral density of the field
as S(x) = W (x, x). The normalized CSD, namely the
complex (spectral) degree of spatial coherence, reads

µ(x1, x2) =
W (x1, x2)√
S(x1)S(x2)

. (2)

It is known that the CSD admits the coherent-mode
representation [1, 2], i.e., an expansion in terms of the
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mutually uncorrelated, spatially fully coherent modes.
This is explicitly given by

W (x1, x2) =

∞∑
m=0

αmψ
∗
m(x1)ψm(x2), (3)

where the weights αm are real and nonnegative and
the mode functions ψm(x) are orthonormal in the
considered region. The eigenvalues and eigenfunctions
are solutions of a Fredhold integral equation [1]. For
a GSM beam the mode functions are of Hermite-
Gaussian (HG) form, written as [1, 16]

ψm(x) =
(2/π)1/4√
2mm!w0

Hm

(√
2x

w0

)
exp

(
− x

2

w2
0

)
, (4)

while the modal weights are

αm = S0

√
2π

β

w0

1 + 1/β

(
1− β
1 + β

)m

. (5)

Above, S0 is the (spatial) peak spectral density, w0

represents the mode width, and Hm(x) is a Hermite
polynomial. Parameter β is a real constant ranging
between 0 ≤ β ≤ 1 and it connects the width w of the
GSM beam and w0 as w = w0/

√
β.

The full CSD of a GSM beam can be expressed as

W (x1, x2) = S0 exp

(
−1 + β2

2β

x21 + x22
w2

0

)
× exp

(
1− β2

β

x1x2
w2

0

)
, (6)

and the related spectral density is

S(x) = S0 exp

(
−2x2

w2

)
. (7)

These enable us to write the complex degree of
coherence of Eq. (2) in the form

µ(x1, x2) = exp

[
− (x2 − x1)2

2σ2

]
, (8)

where σ =
√
β/(1− β)w0 describes the coherence

width of the GSM beam. We further introduce the
overall (effective) degree of coherence [17,18]

µ̄2 =

∫∞
−∞

∫∞
−∞ |W (x1, x2)|2dx1dx2∫∞

−∞
∫∞
−∞ S(x1)S(x2)dx1dx2

, (9)

which characterizes the intensity-weighted degree of
spatial coherence. For a GSM beam, µ̄ =

√
β holds.

2.2. Propagation in nonlinear medium

In this work, a GSM beam is propagated through
a nonlinear medium one realization E(x, z;ω) at a
time. The construction of a statistical ensemble of
realizations that represents a GSM beam is described
in Appendix A. We assume that the medium is
nonmagnetic, source free, and its (dispersive) linear
response is isotropic. The nonlinear response of the

medium is taken local and its strength is expressed by
the nonlinear susceptibility d (in contracted notation)
under the Kleinman symmetry conditions. We from
now on refer to field E(x, z;ω) as the fundamental (F)
wave and invoke the notation E1(x, z) = E(x, z;ω1).
The second-harmonic (SH) wave at frequency ω2 = 2ω1

generated in the medium is denoted by E2(x, z). The
two waves are coupled in propagation and obey [3]

∇2E1(x, z) + k21E1(x, z)

= −4
dω2

1

c2
E∗1 (x, z)E2(x, z), (10)

∇2E2(x, z) + k22E2(x, z) = −2
dω2

2

c2
E2

1(x, z), (11)

where ki = n(ωi)ωi/c with n(ωi) being the refractive
index, i ∈ (1, 2), and c is the vacuum speed of light.

The above coupled equations are numerically
solved by employing the RK method outlined in
Appendix B and the BP method described in Appendix
C. We compared these methods in the context
of field propagation in a nonlinear medium. The
implementation is with Matlab and the two methods
rely on the available RK and Fast Fourier Transform
(FFT) algorithms. As an example, with 600 and 20000
sampling points in the transverse and longitudinal
directions, respectively, the calculation times were
165.5 s with the RK and 0.7 s with the BP method.
Thus, the BP method can here be regarded as two
orders of magnitude faster than the RK technique. As
an example, in Appendix C the output spectral density
distributions of the F and SH waves computed with
the two methods are considered in a specific case. It is
verified that with high accuracy the methods lead to
identical results.

We notice that different ensembles can produce
different SH-field coherence properties since the input
F-field realizations themselves affect the generated SH
field realizations via nonlinear interaction. We assessed
this possible effect by calculating the coherence
properties of the F and SH fields at the output of the
nonlinear crystal for several ensembles of realizations.
It turned out that for sufficiently large ensembles the
SH-wave coherence properties were effectively the same
for all sets. The same holds for the F waves. These are
important justifications for the validity of the method.
The influence of the number of members in an ensemble
is considered in Appendix D. It is found that the
coherence properties reach convergence (are essentially
unaltered if more realizations are included) when the
number of realizations exceeds about three hundred.

3. Numerical results

In this section we evaluate numerically the spatial
coherence properties of the F and SH beams
propagating in a nonlinear medium. We employ the
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BP method for field propagation as it was confirmed
to be significantly faster than the RK technique. The
incident (F) field is a linearly (fully) polarized GSM
beam at frequency ω1. In the entrance facet of the
crystal (chosen to be at z = 0) the field is represented
by a set of realizations {E1n(x, 0)} whose construction
is explained in Appendix A. Averaging over all
realizations leads to the CSD of Eq. (6) as well as
to the Gaussian spectral density of Eq. (7) and the
degree of coherence described by Eq. (8). The width
of the incident beam is in all considered cases fixed at
w = w0/

√
β = 40λ1 with the (vacuum) wavelength of

the F wave being λ1 = 0.8 µm. The effective degree
of coherence of the incident beam is varied by taking
β ∈ {0.3, 0.5, 0.7, 0.85, 0.97}, where the extremes
correspond to a weakly and highly coherent beams,
respectively. We do not consider lower β values since
the beam width is 40λ1 and the transverse coherence
length is in practise at least a few wavelengths.
For each β value, we consider the spectral densities
specified by

√
S0 ∈ [0.001 GV/m, 0.8 GV/m]. This

accordingly affects the amplitudes of the individual
realizations in the ensemble and stronger amplitudes
are expected to imply more notable nonlinear effects.
Furthermore, we choose the length L of the crystal as
L = 0.5 mm and take the medium to be such that
the F and SH waves have the same linear polarization
state which is preserved on propagation. Hence, the
nonlinear susceptibility has only one nonzero element
whose value is taken as d = 2.0 × 10−12 m/V. All
the parameters are chosen such that measurements
are possible, at least in principle, with a picosecond
pulse laser, for instance. We remark that the strength
of the SH wave can be enhanced by increasing either
the incident spectral density or the crystal length [19].
However, in this work the crystal length is kept fixed.

In the following we consider two cases. First,
the refractive index of the crystal is the same at both
frequencies, n(ω1) = n(ω2) = 1.66. Second, the indices
are different, n(ω1) = 1.660, n(ω2) = 1.661. We refer
to these situations as the ‘phase-matched case’ and
the ‘phase-mismatched case’, respectively. We ignore
the back reflections at the output facet as the related
reflectance for the slab with chosen indices (surrounded
by air) is a few percent at normal incidence.

3.1. Phase-matched case

Taking the refractive indices the same at the two
frequencies, we calculate the squared overall degree of
coherence for both the F and SH beams as a function
of the incident beam’s

√
S0, which is a measure for

the average peak amplitude. The computations are
carried out for several β values and the results are
shown in Fig. 1. The pink, yellow, blue, green, and
orange curves refer to the β values of 0.3, 0.5, 0.7,

0.85, and 0.97, respectively. In addition, the solid lines
indicate the F waves whereas the dashed lines denote
the SH beam. We note that with small incident-field
amplitudes, the degree of coherence of the F field does
not change upon passage. This is explained by the
facts that the propagation distance is short and the
low amplitude does not induce significant SHG.

We further see from Fig. 1 that when
√
S0 is

increased, the effective degree of coherence of the F
beam reduces rapidly for all β. At the same time, the
SH beam’s µ̄ remains nearly constant. Consequently,
for all β values, the SH beam’s degree of coherence at
some point becomes larger than that of the F beam.
This subsequently holds within a certain amplitude
range which is the wider the higher is the incident F-
wave β value. For β = 0.85 the range extends roughly
from 0.12 GV/m to 0.5 GV/m and is marked in Fig. 1
with green area. Near the end of the range the overall
degree of coherence of the F beam increases slightly
which is followed by a notable decrease in µ̄ of the
SH beam. The above features can be explained by
considering the behavior of the individual realizations
as will be seen shortly. It is also observed that
for high

√
S0 values the output µ̄ of both beams is

significantly smaller than that at the entrance facet.
As an example, for the F wave with β = 0.85 the

.

.

Figure 1. The squared effective degree of coherence of the F
(solid lines) and SH (dashed lines) beams propagated through
a nonlinear crystal as a function of the incident beam’s

√
S0.

The pink, yellow, blue, green, and orange curves correspond,
respectively, to β = {0.3, 0.5, 0.7, 0.85, 0.97} of the incident GSM
beam. For the case of β = 0.85 the region where the SH beam µ̄ is
larger than that of the F wave is shaded with green. The various
beam and medium parameters are: λ1 = 0.8 µm, w = 40λ1,
L = 0.5 mm, d = 2.0× 10−12 m/V, and n(ω1) = n(ω2) = 1.66.
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Figure 2. Normalized spectral density distributions of (a) the
F field and (b) the SH beam, at the output facet of a nonlinear
crystal as a function of

√
S0. The values at the vertical slices

have been normalized by the corresponding S0. The β value of
the incident GSM beam is set to 0.85 and the white dashed lines
correspond to the examples discussed in Fig. 4. Other material
and field parameters are as in Fig. 1.

overall degree of coherence drops from
√

0.85 ≈ 0.92
to about

√
0.08 ≈ 0.28. Hence, interaction with a

nonlinear optical material provides a way to render a
highly coherent beam into weakly coherent.

The normalized spectral densities of the F and SH
beams at the crystal output are shown in Figs. 2(a)
and (b) as a function of

√
S0 in the case of β = 0.85.

Each vertical slice corresponds to a fixed
√
S0 value.

The figures illustrate the coupling of the F-beam and
SH-beam energies on transmission. The meaning of
the white dashed lines will be explained later. By
comparing the spectral density distributions with the
overall degrees of coherence of Fig. 1, it is evident that
a range of almost constant µ̄ of the SH beam takes place
when most of the F-beam energy has been transferred
to the SH beam. In contrast, at 0.4 − 0.5 GV/m,
where the abrupt decrease of the degree of coherence of
the SH field occurs, the F-wave total output energy is
larger than that of the SH field. In general, for a fixed
crystal length the output energy oscillates between the
F and SH fields as a function of

√
S0. This behavior

is similar to what has been found as a function of the
propagation distance in works assessing the efficiency
of SHG [3,19].

To explain the behaviour of the overall degree of
coherence of the SH beam we consider an ensemble
of incident GSM-beam realizations. Averaging over
all realizations produces a Gaussian spectral density
distribution. However, individual realizations are not
necessarily Gaussian. In particular, when the beam
is partially coherent the realizations exhibit random
spatial shape possibly with several intensity peaks.
Figure 3 shows the spectral density of a typical GSM-
beam realization (black dashed lines) as well as the

related F-wave (blue solid curves) and SH-wave (red
solid curves) realizations in the case of β = 0.5 for√
S0 values of (a) 0.01 GV/m, (b) 0.1 GV/m, and (c)

0.3 GV/m. Note that the GSM-beam realization has
the same shape in all three cases. The lower the overall
degree of coherence, the more random structure the
realizations in general show. For a single realization
the SHG is strongest at the locations of high intensity.
For a low

√
S0 value only the strongest intensity peak

in a realization is able to contribute significantly to the
SH-wave realization whose shape consequently exhibits
a peak at this position [red curve in 3(a)]. The spatial
locations of these peaks in the SH realizations are
highly randomly distributed and represent a field which
is less coherent than the F field. This explains why for
small

√
S0 values µ̄ is smaller for the SH beam in Fig. 1.

When
√
S0 increases more peaks in an F-wave

realization can contribute to the SHG and randomness
in the SH-field realizations increases [red curve in
3(b)]. This tends to decrease the overall degree of
coherence of the SH field as a function of

√
S0 as

observed in Fig. 1. Simultaneously, the peaks in the
F-field realizations contributing to the SHG are split
into two as the energy in the middle of a peak is
transferred to the SH-field realization [blue curve in
3(b)]. This effect increases the number of peaks in the

0 10050-50-100

1

0

0.5

0 10050-50

x/ 1

(a) (b)

S
(x
)

0 10050-50-100

1

0

0.5

S
(x
)

x/ 1 x/ 1

(c)

Figure 3. Spectral densities of a typical incident GSM-
beam realization (black dashed curve) and the corresponding
transmitted F (blue solid curve) and SH (orange solid curve)
wave realizations. The incident GSM beam has β = 0.5 and√
S0 equals (a) 0.01 GV/m, (b) 0.1 GV/m, and (c) 0.3 GV/m.

All plots have been normalized with S0.
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F-wave realizations and likewise leads to a decreasing
trend in µ̄. The abrupt decrease of the SH-field µ̄
occurs when

√
S0 becomes sufficiently large to induce

SHG also in the tail parts of the F-field realizations.
Simultaneously, the high amplitude part of the SH
realization converts back to the F-wave realization
splitting the SH-wave realization. In this case, the
SH (and F) realizations show highly peaked (random)
structures [red and blue curves in 3(c)]. Similar effects
also explain the filamentation of the spectral density
distributions as observed in the right-hand sides of
Figs. 2(a) and (b) in the case of β = 0.85. We also
remark that multipeaked realizations such as those
found by increasing S0, can likewise be obtained by
increasing the crystal length.

Figures 4(a) and (b) show the spectral density
distributions of the F field (blue solid curve) and
the SH field (orange solid curve) along the white
dashed lines located at 0.09 GV/m and 0.45 GV/m,
respectively, in Fig. 2. Black dashed lines depict
the incident-wave Gaussian spectral density whose
peak value is used to normalize all the curves. In
Fig. 4(a) the dip in the middle part of the F-beam
curve demonstrates the energy transfer to the SH beam
which displays a nearly Gaussian shape whereas the
filamentation of both beams is visible in (b). Hence,
due to the nonlinear optical response of the medium
both the F and SH output beams may, at large incident
intensities, deviate significantly from a Gaussian shape.
Notice also that in the cases of (a) and (b) the overall
SH-field degree of coherence is in the flat and rapidly
decreasing regions in Fig. 2 (green dashed curve). By
comparing the spectral density distributions of the
incident and transmitted beams we further observe
that the widths are similar for all beams in (a) but in
(b) the width of the transmitted F beam is half of that

0 10050-50-100

1

0

0.5

0 10050-50

x/�1 x/�1

(a) (b)

S
(x
)

Figure 4. Distributions of the transmitted spectral densities of
the F (blue solid curve) and SH (orange solid curve) beams in
the cases of (a)

√
S0 = 0.09 GV/m and, (b)

√
S0 = 0.45 GV/m.

Black dashed curves show the incident Gaussian spectral density.
The situations in (a) and (b), respectively, correspond to the left
and right white dashed lines in Figs. 2(a) and (b). All curves
have been normalized with S0.

of the SH beam. This suggests that a nonlinear light-
matter interaction could be exploited to synthesize a
beam with adjustable (narrower) width.

Figure 5 presents the magnitude of the degree
of coherence at the output of a nonlinear crystal for
the F beam (left column) and the SH beam (right
column). The upper row corresponds to the low
amplitude case of

√
S0 = 0.09 GV/m whereas the

lower row represents the high amplitude situation with√
S0 = 0.45 GV/m, which both are also depicted with

vertical white dashed lines in Fig. 2. As seen from 5(a),
even with a low incident-field amplitudes the degree
of spatial coherence of the F beam deviates notably
from that of the original GSM beam (which would be a
straight diagonal bar but not shown). The origin of this
modulation can be traced to the splitting of the F-field
realizations as discussed earlier. In contrast, as seen
from (b) the SH beam degree of coherence resembles
the GSM beam coherence. At high intensities and for
both beams the degree of coherence becomes strongly
modulated as is visible in (c) and (d). The modulation
is particularly strong in the region of high spectral
density extending roughly from −40λ1 to 40λ1 [see
Figs. 4(a) and (b)]. The above observations suggest
that SHG can be employed to alter and control the
two-point spatial coherence properties of light beams.

100
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-50

-100
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-50

-100
-100 -50 0 50 100
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(c) (d)

-50 0 50 100
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Figure 5. Magnitudes of the degree of coherence of the F beam
(left column) and SH beam (right column) at the output facet
of a nonlinear crystal for β = 0.85 of the incident GSM beam.
The upper and lower rows correspond to the cases of

√
S0 = 0.09

GV/m and
√
S0 = 0.45 GV/m, respectively, marked with white

dashed lines in Fig. 2.
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3.2. The phase-mismatched case

Next we assess the situation in which the refractive
index is different at different frequencies. We choose
n(ω1) = 1.660 and n(ω2) = 1.661 which amount
to a (dispersive) phase mismatch of ∆k = 2k1 −
k2 = −1.5708× 104 rad/m (for collinear components).
The other parameters are as in Sec. 3.1. The phase
mismatch is expected to reduce the efficiency of the
SHG which is clearly visible in Figs. 6(a) and (b)
showing the output spectral density distributions for
the F and SH beams, respectively, as a function of

√
S0.

In addition, the SHG occurs periodically as function of√
S0. Analogous phase-mismatch-induced periodicity

of the F- and SH-wave energies but as a function of
the propagation distance has been discussed, e.g., in
Refs. [3, 19].
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x
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S [GV/m]0

(a) S(x; 1)

0.2 0.4 0.6 0.8

S [GV/m]0

(b) S(x; 2)

0 1

Figure 6. Same as in Fig. 2, but for n(ω1) = 1.660 and
n(ω2) = 1.661.

The overall degree of coherence as a function
of
√
S0 is presented in Fig. 7 in the cases of β ∈

{0.3, 0.5, 0.7, 0.85, 0.97} with pink, yellow, blue, green,
and orange lines, respectively. The solid lines refer to
the F beam while the dashed lines represent the SH
field. For both beams the degree in general decreases
with increasing

√
S0. The mechanism behind this

behavior is the same as in the phase-matched case
of Fig. 1, i.e., more intensity peaks in the random
realizations contribute to SHG while the intensity
peaks of F-field realizations are split. Further, by
comparing Figs. 6 and 7 we observe that the local
maxima of the spectral density coincide with the
maxima of the µ̄ curves for both beams. The periodic
oscillations in the spectral density and the overall
degree of coherence as a function of

√
S0 originate from

the phase mismatch. Similar effects are not present in
Figs. 1 and 2.
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Figure 7. Same as in Fig. 1, but for n(ω1) = 1.660 and
n(ω2) = 1.661.

4. Conclusions

We analysed the spectral spatial coherence effects
in SHG induced by a stationary GSM beam. The
overall degrees of coherence of the F and SH fields
at the exit facet of a nonlinear crystal were found to
decrease significantly with increasing peak intensity of
the incident beam. In particular, at strong intensities,
a highly coherent GSM beam may generate a weakly
coherent SH beam and become highly incoherent
itself on propagation. Hence the SHG effect can
be used to render a coherent beam into a weakly
coherent one. In addition, the coherence properties
of both fields may significantly differ from the GSM,
especially at high F-wave intensities. In particular,
the spectral density distributions of both F and SH
waves may show filament structures or the F wave
width may be significantly smaller than that of the
incident GSM beam. Further, the two-point degree
of coherence can be modified to deviate significantly
from a Gaussian shape. Propagation in nonlinear
medium was performed with the RK and BP methods
which led to identical results but the latter was found
to be two orders of magnitude faster. The results
suggest that the coherence properties of light beams
can be tailored and controlled by exploiting a nonlinear
material interaction.
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Appendix A. Construction of an ensemble of
realizations

In this appendix we construct an ensemble of
realizations describing a GSM beam. Specifically, we
require that the CSD is of the form of Eq. (3) with the
modes ψm(x) given by the HG functions of Eq. (4).
We write a single realization as

En(x) =

M−1∑
m=0

α′nmψm(x), (A.1)

where M is a sufficiently large number and α′nm are
random complex numbers to be determined. Averaging
over the ensemble as in Eq. (1) results in

W (x1, x2) =

M−1∑
m=0

M−1∑
m′=0

(
1

N

N−1∑
n=0

α′∗nmα
′
nm′

)
× ψ∗m(x1)ψm′(x2), (A.2)

where we assumed that the ensemble contains N
realizations. Theoretically both N and M should
approach infinity but in practise the summations have
to be cut as we have done. For Eq. (A.2) to coincide
with the CSD of a GSM the following must hold

1

N

N−1∑
n=0

α′∗nmα
′
nm′ = αmδmm′ , (A.3)

where αm is the modal coefficient given in Eq. (5) and
δmm′ is the Kronecker delta function. We may set

α′nm =
√
αm exp (iφnm), (A.4)

where φnm is a random phase uniformly distributed
within the interval [0, 2π]. Equations (A.3) and (A.4)
therefore imply

1

N

N−1∑
n=0

exp [i(φnm′ − φnm)] = δmm′ . (A.5)

Next we introduce the phase matrix

φ =
exp (iφ00) . . . exp [iφ0(M−1)]

exp (iφ10)
. . .

...
exp [iφ(N−1)0] exp [iφ(N−1)(M−1)]

 , (A.6)

whose rows represent individual realizations and
columns are mutually orthogonal vectors if M is
infinitely large. However, since M is finite we
employ the Gram-Schmidt method to render them
orthonormal. This then leads to a matrix

C =


c00 . . . c0(M−1)

c10
. . .

...
c(N−1)0 c(N−1)(M−1)

 , (A.7)

whose columns are orthonormal vectors and satisfy

1

N

N−1∑
n=0

c∗nmcnm′ = δmm′ . (A.8)

We then set

α′nm =
√
αmcnm, (A.9)

which via Eq. (A.1) generates an ensemble of random
realizations that represents a GSM beam. We
point out that, e.g., in Refs. [8–10, 12] the above
orthonormalization procedure was not employed and
hence the resulting CSD may not accurately represent
a GSM beam.

Appendix B. Runge–Kutta method

Below we describe the main points of the RK propa-
gation method. We invoke the envelope representation
of the field as Ej(x, z) = Aj(x, z) exp(ikjz) and for ex-
pressing the required formulas we introduce a new vari-
able A′j(x, z) = ∂zAj(x, z) with ∂z = ∂/∂z, j ∈ (1, 2).
This allows us to split the second-order z derivatives
in Eqs. (10) and (11) into four first-order derivatives
leading to

∂zA1(x, z) = A′1(x, z), (B.1)

∂zA
′
1(x, z) = − 4

dω2
1

c2
A∗1(x, z)A2(x, z) exp(−i∆kz)

− i2k1A′1(x, z)− ∂xxA1(x, z), (B.2)

∂zA2(x, z) = A′2(x, z), (B.3)

∂zA
′
2(x, z) = − 2

dω2
2

c2
A2

1(x, z) exp(i∆kz)

− i2k1A′2(x, z)− ∂xxA2(x, z), (B.4)

where ∂xx = ∂2/∂x2 and ∆k = 2k1 − k2 are
the spatial second-order derivative and the phase
mismatch, respectively. The set of Eqs. (B.1)–(B.4)
can be integrated with respect to z by employing the
RK algorithm [20]. When using an ordinary differential
equation solver one needs to perform the spatial second
order derivations numerically on every integration step.
We also employ a nonlinear coordinate transformation
[21] to prevent the reflections from the calculation
window boundaries.

Appendix C. Beam-propagation method

Next we outline the BP method [22] for field
propagation in a nonlinear medium. The solutions for
the homogeneous versions of Eqs. (10) and (11) can
be written using the angular-spectrum representation
as [23]

Ej(kxj , z) =
1

2π

∫ ∞
−∞

Ej(x, z) exp(−ikxjx)dx, (C.1)



Spatial coherence effects in second-harmonic generation of scalar light fields 9

Ej(x, z) =

∫ ∞
−∞

Ej(kxj , z0)

× exp(ikxjx+ ikzj∆z)dkxj , (C.2)

where j ∈ (1, 2) and kxj is the spatial frequency, i.e.,
the wave vector x component, and ∆z = z − z0 is
the propagation step from an arbitrary reference plane
at z0 to z. The z component of the wave vector is
kzj = (k2j −k2xj)1/2 for j ∈ (1, 2). To find an expression
when the source terms (right-hand sides) are included
in Eqs. (10) and (11), we assume that within a small
propagation distance ∆z the nonlinear polarization
changes linearly and its spatial spreading is negligible.
Consequently, we may use the slowly-varying envelope
approximation (SVEA) [3,24] and write

∇2Ej(x, z) + k2jEj(x, z) ≈ i2kj∂zAj(x, z), (C.3)

where we have denoted the slowly varying envelope by
Aj(x, z), j ∈ (1, 2). We neglected the phase terms
exp(ikzjz) in Eq. (C.3) since the aim is to use the
angular-spectrum representation for the field Ej(x, z)
that includes the phase. Equating the right-hand
side of Eq. (C.3) with those of Eqs. (10) and (11),
integrating from z0 to z, rearranging and combining
with Eq. (C.2) yields∫ ∞
−∞

E1(kx1, z0) exp[i(kx1x+ kz1∆z)]dkx1

= E1(x, z0) +
2idω2

1

k1c2
E1(x, z0)E∗2 (x, z0)∆z, (C.4)∫ ∞

−∞
E2(kx2, z0) exp[i(kx2x+ kz2∆z)]dkx2

= E2(x, z0) +
idω2

2

k2c2
E2

1(x, z0)∆z. (C.5)

Above, the F and SH fields in the z0 plane are known
and using Eq. (C.1), one can construct, by employing
the FFT, an iterative method for the propagation of
the coupled fields.

We tested the numerical methods presented in
Appendices B and C by propagating a deterministic
Gaussian beam whose width and peak amplitude
are w0 = 20λ1 and A1(0, 0) = 1 × 109 V/m,
respectively, through a second-order nonlinear crystal
with the coupling constant d = 2.0 × 10−13 m/V
and thickness L = 1 mm. In a plane-wave model
the chosen peak amplitude corresponds to the power
of 100 GW/cm2 which is easily achieved, e.g., with
picosecond pulsed lasers. Such long pulses can be
regarded stationary conforming with the assumptions
of this work. With 600 and 20000 sampling points
in the x and z directions, respectively, the calculation
times were 165.5 s (RK) and 0.7 s (BP). Therefore, we
may consider the BP method two orders of magnitude
faster than the RK technique. Figure C1(a) shows
the F and SH waves after propagation in the medium.
The incident beam profile is shown with black dashed

line whereas solid lines present, respectively, the F
(red) and the generated SH (yellow) beams calculated
with the RK method. The corresponding spectral
densities obtained with the BP method are displayed
with purple (F) and green (SH) dashed lines. The
results are, to a good accuracy, identical.
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Figure C1. (a) Comparison of the RK and BP methods.
Spectral density distributions are shown for the F and SH waves
at the output facet of a nonlinear crystal calculated with the RK
method [red (F) and yellow (SH) solid lines] and the BP method
[purple (F) and green (SH) dashed lines]. The black dashed
curve illustrated the incident beam. (b) The squared overall
degree of spatial coherence for the F (squares) and SH (circles)
waves as a function on the number of realizations. The red and
blue symbols denote the case when the initial GSM beam has
β = 0.85, while black and magenta correspond to an incident
beam of β = 0.3. In both cases, the incident beam’s average
amplitude is 0.45 GV/m.
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Appendix D. Convergence arguments

In this appendix we assess the convergence of the
results by considering the influence of the number
of realizations in an ensemble. As a quantitative
measure we employed the overall degree of coherence
squared whose values at the nonlinear crystals’s exit
facet are shown in Fig. C1(b) as a function of the
number of realizations. The squares and circles refer
to the F and SH waves, respectively, with blue and red
colors associated with an incident beam of β = 0.85,
whereas black and magenta represent the situation of
β = 0.3. The incident average amplitude corresponds
to the high-intensity case of 0.45 GV/m, which is
numerically challenging since both field distributions
decompose into narrow filaments. However, in all cases
we observe that the overall degree of coherence does
not significantly change if the number of realizations
exceeds, say, three hundred.
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