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ABSTRACT
Sufficient conditions for coefficients of the non-homogeneous linear
complex differential equation

f (k) + Ak−1(z)f
(k−1) + · · · + A1(z)f

′ + A0(z)f = Ak(z)

are found such that all solutions belong to some weighted Fock
spaces, where Aj(z) are entire functions, j = 0, 1, . . . , k. Furthermore,
sufficient conditions for the coefficient A(z) such that all solutions of
the special second order equation

f ′′ + A(z)f = 0

belong to some weighted Fock spaces are given by the Bergman
reproducing kernel, where A(z) is an entire function.
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1. Introduction andmain results

One ofmain objectives in the research of the non-homogeneous linear complex differential
equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = Ak(z) (1)

with analytic coefficients in the complex domain is to consider the relations between the
growth of coefficients and the growth of solutions. Many results on the case of fast grow-
ing solutions have been obtained by Nevanlinna theory and Wiman-Valiron theory. On
the other hand, some other methods are needed in dealing with slowly growing solu-
tions. There are some useful and powerful techniques, for instance, Herold’s comparison
theorem [10,11],Gronwall’s lemma [14], Picard’s successive approximations [4,6] and some
methods based on Carleson measures [13,21,22].

In recent years, the research of Equation (1) in function spaces has been widely con-
cerned, whereAj(z) are analytic in the unit disc, j = 0, 1, . . . , k and see [7,12,16,18]. For the
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case of the complex planeC, in [24], the homogeneous linear complex differential equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0

is considered, where Aj(z) are entire functions, j = 0, 1, . . . , k − 1. The relations between
coefficients and solutions in Fock type spaces are obtained and for more details see [24,
Theorems 2.1 and 3.1].

It is well known that differential equations play an important role in the spectrum anal-
ysis of differential operators (see [1,2,9]). Recently, differential operators on weighted Fock
spaces have been studied and refer to [19,20].

Motivated by the study of weighted Fock spaces and complex differential equations, suf-
ficient conditions for coefficients of Equation (1) are found such that all solutions belong
to some weighted Fock spaces, where Aj(z) are entire functions, j = 0, 1, . . . , k. Further-
more, similar to Section 7 in [7], sufficient conditions for the coefficient A(z) such that all
solutions of the second order linear differential equation

f ′′ + A(z)f = 0 (2)

belong to some weighted Fock spaces are shown, where A(z) is an entire function. In this
paper, we use some methods and ideas from [5,7,11,15,16,23,24] to deal with them.

The classical Fock space is defined as follows. Let g(r) = e−(1/2)r2 for r ∈ [0,∞). For
p ∈ [1,∞], the space Lpg consists of those functions f, Lebesgue measurable inC, for which

‖f ‖p :=
(∫

C

∣∣∣f (z)e−(1/2)|z|2
∣∣∣p dm(z)

)1/p
< ∞, p ∈ [1,∞),

and

‖f ‖p := sup
z∈C

{|f (z)|e−(1/2)|z|2} < ∞, p = ∞.

Here dm(z) denotes the classical Lebesgue measure dx dy inC. The Fock space Fp consists
of all entire functions in Lpg and refer to [25]. In particular, the space F2 is a closed subspace
of the Hilbert space L2g with the inner product:

〈f , h〉 := 1
π

∫
C

f (z)h(z)e−|z|2 dm(z), f , h ∈ L2g .

The Fock-Sobolev space is widely studied and was first introduced in [3]. For p ∈ [1,∞]
and m ∈ N, the Fock-Sobolev space Fp,m is a subspace of Fp consisting of all entire
functions f such that

‖f ‖Fp,m :=
∑
α≤m

‖f (α)‖p < ∞,

where ‖ · ‖p is the norm in Fp. It follows from [3, Theorem A] that f ∈ Fp,m if and only if
zmf (z) ∈ Fp. Namely, there is a positive constant C such that

C−1‖zmf ‖p ≤
∑
α≤m

‖f (α)‖p ≤ C‖zmf ‖p.

In [5], the weighted Fock space is studied intensively.
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Let φ : [0,∞) → (0,∞) be a twice continuously differentiable function with its Lapla-
cian satisfying �φ(|z|) > 0 and we can extend φ to C by φ(z) = φ(|z|). And there exist
a positive differentiable decreasing function τ : C → R+ with τ(r) = τ(|z|) = τ(z) and a
constant C ∈ (0,∞) such that τ(z) = C for 0 ≤ |z| < 1, and for |z| ≥ 1,

C−1(�φ(|z|))−1/2 ≤ τ(z) ≤ C(�φ(|z|))−1/2,

lim
r→∞ τ(r) = 0, lim

r→∞ τ ′(r) = 0.

Moreover, suppose that either there exists a constant η > 0 such that τ(r)rη increases for
large r or

lim
r→∞ τ ′(r) log

1
τ(r)

= 0.

The set I , consisting of all φ satisfying the above-mentioned conditions, is called the class
of rapidly increasing functions. It is obvious that φ(r) = rα ∈ I for α > 2, and φ(r) =
eβr ∈ I for β > 0.

For p ∈ [1,∞] and φ ∈ I , the weighted Fock space Fpφ consists of all entire functions f
with

‖f ‖Fpφ :=
(∫

C

|f (z)|pe−pφ(z) dm(z)
)1/p

< ∞, p ∈ [1,∞),

and

‖f ‖Fpφ := sup
z∈C

{
|f (z)|e−φ(z)

}
< ∞, p = ∞.

Clearly, it is the classical Fock space when φ(z) = |z|2/2 and it is the Fock-Sobolev space
when φ(z) = |z|2/2 − m log |z|.

Let the point evaluation Lζ (f ) = f (ζ ) for f ∈ F2φ and ζ ∈ C. It follows from [5] that the
point evaluation Lζ is a bounded linear functional in F2φ . And there exists a reproducing
kernel Kζ ∈ F2φ with ‖Kζ‖F2φ = ‖Lζ‖ such that

f (ζ ) = Lζ (f (z)) =
∫

C

f (z)Kζ (z)e−2φ(z) dm(z).

Moreover, if


 = {
en(z) = znδ−1

n : n ∈ N
}

is an orthonormal basis of F2φ , where δ2n = 2π
∫∞
0 r2n+1e−2φ(r) dr, then

Kζ (z) =
∞∑
n=0

〈Kζ , en〉en(ζ ) =
∞∑
n=0

en(ζ )en(z).

Similar to the weighted Fock space, we can define the weighted Fock-Sobolev space as
follows.
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For p ∈ [1,∞), q ∈ R andφ ∈ I , theweighted Fock-Sobolev spaceFp,qφ consists of those
entire functions f, for which

‖f ‖Fp,qφ
:=
(∫

C

|f (z)|pe−pφ(z)φq(z) dm(z)
)1/p

< ∞.

The weighted Fock-Sobolev space is the weighted Fock space when q = 0.
In this paper, the above-mentioned spaces are uniformly called weighted Fock spaces

for convenience.
In [16,23], they studied the sufficient conditions for solutions of the linear complex dif-

ferential equation in Hardy type space and the F(p, q, s) space by the characterization of
higher derivatives respectively. In [15], a characterization of the entire function f ∈ Fp is
obtained by the higher derivative f (m), where p ∈ [1,∞) andm ∈ N. Similarly, we give the
following Theorems 1.1 and 1.2.

Theorem 1.1: Let Aj(z) be entire functions, j = 0, 1, . . . , k. Suppose that for every p ≥ 1
there exist positive constants C and Dl, depending on p and k, such that

C
k−1∑
l=0

Dl sup
z∈C

{ |Al(z)|
(1 + |z|)k−l

}
< 1

and the kth order primitive function ϕk(z) of Ak(z) belongs to Fp. Then all solutions of
Equation (1) belong to Fp.

Theorem 1.2: Let Aj(z) be entire functions, j = 0, 1, . . . , k. Suppose that for every p ≥ 1
there exist positive constants Ej and Cl, depending on p and k, such that

k∑
l=0

Cl

⎛
⎝k−1∑

j=0
sup
z∈C

{ |Aj|
(1 + |z|)k−l−j

}
Ej

⎞
⎠ < 1

and the kth order primitive function ϕk(z) of Ak(z) belongs to Fp,k. Then all solutions of
Equation (1) belong to Fp,k.

In [24], one sufficient condition such that all coefficients of the homogeneous linear
complex differential equation belong to Fock-type spaces is obtained. Thus, we try to find
sufficient conditions such that all coefficients of Equation (1) belong to someweighted Fock
spaces. However, it is difficult to deal with this problem. Here we only obtain the following
Remark 1.1 and its proof is omitted.

Remark 1.1: Suppose thatAj(z) are constant functions, j = 0, 1, . . . , k − 1 andAk(z) is an
entire function. If Equation (1) has a solution f ∈ Fp,k, then Ak(z) is in Fp.

Next, the ideas of Theorems 1.3 and 1.4 come from [7, Section 7], and sufficient condi-
tions for the coefficientA(z) such that all solutions of Equation (2) belong to someweighted
Fock spaces are shown by the Bergman reproducing kernel.
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Theorem 1.3: Let φ,ϕ be in the class I and A be an entire function. Suppose that
| ∫ z

0 A(ζ ) dζ |e−ϕ(z) is bounded in z ∈ C and

TK(A) = sup
z∈C

{∣∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)

e−2φ(η)+ϕ(η)

(1 + φ′(η))2
dm(η)

∣∣∣∣∣ e−ϕ(z)

}
< 1.

Then the derivative f ′ of each solution f of Equation (2) belongs to F∞
ϕ .

Theorem 1.4: Let φ be in the class I and there exists r0 > 0 such that φ′(r) �= 0 for r > r0.
Moreover, assume that φ satisfies

lim
r→∞

re−pφ(r)

φ′(r)
= 0,

and

−∞ < lim inf
r→∞

1
r

(
r

φ′(r)

)′
≤ lim sup

r→∞
1
r

(
r

φ′(r)

)′
< p,

where p ≥ 1. If A is an entire function and

ZK(A) =
∫

C

(∫
C

e−2φ(η)

∣∣∣∣
∫ z

0
Kζ (η)A(ζ ) dζ

∣∣∣∣
2
dm(η)

)
e−2φ(|z|)

(1 + φ′(|z|))2 dm(z)

is sufficiently small, then all solutions f of Equation (2) belong to F2φ .

The structure of this paper is arranged as follows. Sufficient conditions for coefficients
such that all solutions of Equation (1) belong to some weighted Fock spaces are obtained in
Section 2. Furthermore, sufficient conditions for the coefficientA(z) such that all solutions
of Equation (2) belong to some weighted Fock spaces are shown in Section 3.

2. Sufficient conditions for solutions of Equation (1) to be in someweighted
Fock spaces

In this section, we consider sufficient conditions for coefficients of Equation (1) such that
all solutions belong to some weighted Fock spaces.

The following lemma is the characterization of the Fock norm ‖f ‖p needed in the proofs
of Theorems 1.1 and 1.2.

Lemma 2.1 ([15]): Suppose that p ∈ [1,∞) and m ∈ N. Then, for any entire function f (z),
there exists a positive constant C, depending on p and m, such that

C−1‖f ‖p ≤
∑

α≤m−1
|f (α)(0)| +

(∫
C

∣∣∣∣∣f (m)(z)
e−(1/2)|z|2

(1 + |z|)m
∣∣∣∣∣
p

dm(z)

)1/p

≤ C‖f ‖p.

We now start to prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1: It is known that if Aj(z) are entire functions, j = 0, 1, . . . , k, then
all solutions f of Equation (1) are entire functions [17]. By Lemma 2.1,

‖f ‖p ≤ C

⎛
⎝ ∑

α≤k−1

|f (α)(0)| +
(∫

C

∣∣∣∣f (k)(z) 1
(1 + |z|)k e

−(1/2)|z|2
∣∣∣∣
p
dm(z)

)1/p
⎞
⎠

= C1 + C
(∫

C

∣∣∣∣f (k)(z) 1
(1 + |z|)k e

−(1/2)|z|2
∣∣∣∣
p
dm(z)

)1/p

,

where C1 = C(
∑

α≤k−1 |f (α)(0)|). By Equation (1) and the Minkowski inequality,

‖f ‖p ≤ C1 + C

⎛
⎝∫

C

∣∣∣∣∣
(k−1∑

l=0

Al(z)f (l)(z) − Ak(z)

)
e−(1/2)|z|2

(1 + |z|)k

∣∣∣∣∣
p

dm(z)

⎞
⎠

1/p

≤ C1 + C
k−1∑
l=0

(∫
C

∣∣∣∣∣Al(z)f (l)(z)
e−(1/2)|z|2

(1 + |z|)k

∣∣∣∣∣
p

dm(z)

)1/p

+ C

(∫
C

∣∣∣∣∣Ak(z)e−(1/2)|z|2

(1 + |z|)k

∣∣∣∣∣
p

dm(z)

)1/p

≤ C1 + C
k−1∑
l=0

sup
z∈C

{ |Al(z)|
(1 + |z|)k−l

}(∫
C

∣∣∣∣∣f (l)(z)e
−(1/2)|z|2

(1 + |z|)l

∣∣∣∣∣
p

dm(z)

)1/p

+ C

(∫
C

∣∣∣∣∣Ak(z)e−(1/2)|z|2

(1 + |z|)k

∣∣∣∣∣
p

dm(z)

)1/p

.

Using Lemma 2.1 again,

‖f ‖p ≤ C1 + C

(k−1∑
l=0

sup
z∈C

{ |Al(z)|
(1 + |z|)k−l

}
Dl‖f ‖p + Dk‖ϕk‖p

)
,

where ϕk(z) is the kth primitive function of Ak(z). Then,

‖f ‖p
(
1 − C

(k−1∑
l=0

sup
z∈C

{ |Al(z)|
(1 + |z|)k−l

}
Dl

))
≤ C1 + CDk‖ϕk‖p.

If ‖f ‖p = ∞, it is in contradiction to the condition of Theorem 1.1. Therefore,

‖f ‖p ≤ C1 + CDk‖ϕk‖p
1 − C

∑k−1
l=0 Dl supz∈C

{ |Al(z)|
(1+|z|)k−l

} < +∞,

and then f ∈ Fp. �
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Proof of Theorem 1.2: If f is a solution of Equation (1), then f is an entire function. By
Lemma 2.1, Equation (1) and the Minkowski inequality,

‖f (z)‖Fp,k ≤
k∑

l=0

Cl

⎛
⎝k−1∑

α=l

|f (α)(0)| +
(∫

C

∣∣∣∣∣f (k)(z) e−(1/2)|z|2

(1 + |z|)k−l

∣∣∣∣∣
p

dm(z)

)1/p⎞⎠

≤ D1 +
k∑

l=0

Cl

k−1∑
j=0

(∫
C

∣∣∣∣∣Aj(z)f (j)(z)e−(1/2)|z|2

(1 + |z|)k−l

∣∣∣∣∣
p

dm(z)

)1/p

+
k∑

l=0

Cl

(∫
C

∣∣∣∣∣Ak(z)e−(1/2)|z|2

(1 + |z|)k−l

∣∣∣∣∣
p

dm(z)

)1/p

≤ D1 +
k∑

l=0

Cl

k−1∑
j=0

sup
z∈C

{ |Aj(z)|
(1 + |z|)k−l−j

}(∫
C

∣∣∣∣∣ f
(j)(z)e−(1/2)|z|2

(1 + |z|)j
∣∣∣∣∣
p

dm(z)

)1/p

+
k∑

l=0

Cl

(∫
C

∣∣∣∣∣Ak(z)e−(1/2)|z|2

(1 + |z|)k−l

∣∣∣∣∣
p

dm(z)

)1/p

,

where D1 = ∑k
l=0 Cl(

∑k−1
α=l |f (α)(0)|). Using Lemma 2.1 again,

‖f ‖Fp,k ≤ D1 +
k∑

l=0

Cl

k−1∑
j=0

(
sup
z∈C

{ |Aj(z)|
(1 + |z|)k−l−j

}
Ej‖f ‖p

)
+

k∑
l=0

ClFl‖ϕ(l)
k ‖p

≤ D1 +
k∑

l=0

Cl

⎛
⎝k−1∑

j=0
sup
z∈C

{ |Aj(z)|
(1 + |z|)k−l−j

}
Ej

⎞
⎠ ‖f ‖Fp,k +

k∑
l=0

ClFl‖ϕ(l)
k ‖p

≤ D1 +
k∑

l=0

Cl

⎛
⎝k−1∑

j=0
sup
z∈C

{ |Aj(z)|
(1 + |z|)k−l−j

}
Ej

⎞
⎠ ‖f ‖Fp,k + G‖ϕk‖Fp,k ,

where G = max0≤l≤k{ClFl}. Then,

‖f ‖Fp,k
⎛
⎝1 −

k∑
l=0

Cl

⎛
⎝k−1∑

j=0
sup
z∈C

{ |Aj(z)|
(1 + |z|)k−l−j

}
Ej

⎞
⎠
⎞
⎠ ≤ D1 + G‖ϕk‖Fp,k .

If ‖f ‖Fp,k = ∞, it is in contradiction to the condition of Theorem 1.2. Therefore,

‖f ‖Fp,k ≤ D1 + G‖ϕk‖Fp,k
1 −∑k

l=0 Cl

(∑k−1
j=0 Ej supz∈C

{ |Aj(z)|
(1+|z|)k−l−j

}) < +∞,

and then f ∈ Fp,k. �
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In [11], the growth of solutions of Equation (1) is obtained as follows. In order to state
the following Theorem A, the notion is needed

δ =
{
0, if Ak ≡ 0,
1, otherwise.

Theorem A ([11]): Let f (z) be a solution of Equation (1) in the disk �R = {z ∈ C : |z| <

R}, where 0 < R ≤ ∞, and 0 ≤ kc ≤ k be the number of nonzero coefficients Aj(z), j =
0, 1, . . . , k − 1. If R0 is a positive real number such that there exists some Aj(R0eiθ ) �= 0,
then, for all R0 < r < R,

|f (reiθ )| ≤ C
(
max
0≤x≤r

|Ak(xeiθ )| + 1
)
exp

(∫ r

0

(
δ + kc max

0≤j≤k−1
|Aj(seiθ )|1/(k−j)

)
ds
)
,

where C is some positive constant depending on the values of the derivatives of f (z) and the
values of Aj(z) at R0eiθ , j = 0, 1, . . . , k.

Here we give an application of Theorem A in weighted Fock spaces.

Example 2.1: Suppose that Ak(z) is a nonconstant entire function and there exists a non-
constant function among entire functions Aj(z), j = 0, 1, . . . , k − 1. If φ is in the class I
and there exists a sufficiently large r0 such that for r > r0,

|Aj(reiθ )| ≤ φ1/2(r)
r

, j = 0, 1, . . . , k,

then all solutions of Equation (1) belong to Fp,qφ .

The following lemmas are important in the proof of Example 2.1.

Lemma 2.2: Suppose that φ is in the class I . Then

lim
r→∞

φ(r)
r2

= ∞.

Proof: By L’Hospital’s rule,

lim
r→∞

φ(r)
r2

= lim
r→∞

φ′(r)
2r

= lim
r→∞

rφ′(r)
2r2

= lim
r→∞

(rφ′(r))′

4r

= lim
r→∞

1
4

(
φ′′(r) + φ′(r)

r

)
= lim

r→∞
1
4
�φ(r).

Since C−1(�φ(|z|))−1/2 ≤ τ(z) and τ(z) decreases to 0 as |z| → ∞,

lim
r→∞

φ(r)
r2

= ∞. �
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Lemma 2.3 ([8]): Suppose that φ is in the class I and f (z) is an entire function. Then, for
any R > 0, there eixits a constant C>0 such that∫

C

|f (z)|pe−pφ(z)φq(z) dm(z) ≤ C
∫

|z|≥R
|f (z)|pe−pφ(z)φq(z) dm(z).

Proof of Example 2.1: If f is a solution of Equation (1), then f is an entire function. By
Theorem A,

|f (reiθ )| ≤ C
(
max
0≤x≤r

|Ak(xeiθ )| + 1
)
exp

(∫ r

0

(
δ + kc max

0≤j≤k−1
|Aj(seiθ )|1/(k−j)

)
ds
)
.

SinceAk(z) is not a constant function and there exists a nonconstant function amongAj(z),
j = 0, . . . , k − 1, for sufficiently large r > r1,

|f (reiθ )| ≤ C
(
2 max
0≤x≤r

|Ak(xeiθ )|
)
exp

(∫ r

0

(
2kc max

0≤j≤k−1
|Aj(seiθ )|1/(k−j)

)
ds
)
.

Since |Aj(reiθ )| ≤ φ1/2(r)/r for r > r0, for r > R = max{r0, r1, 1},

|f (reiθ )| ≤ 2CD
φ1/2(r)

r
exp

(
2kc max

0≤j≤k−1

∫ r

R

(
φ1/2(s)

s

)1/(k−j)

ds

)
,

where

D = exp
(∫ R

0

(
2kc max

0≤j≤k−1
|Aj(seiθ )|1/(k−j)

)
ds
)
.

Since

max
0≤j≤k−1

∫ r

R

(
φ1/2(s)

s

)1/(k−j)

ds ≤ φ1/2(r)
∫ r

R
s−1/k ds ≤ φ1/2(r)

k
k − 1

r1−1/k,

we have

|f (reiθ )| ≤ D1
φ1/2(r)

r
exp

(
D2φ

1/2(r)r1−1/k
)
, R < r < ∞,

where D1 = 2CD and D2 = 2kc(k/(k − 1)). By Lemma 2.2 and φ ∈ I , there exists R′ > 0
such that φ(r) > r2 for r > R′. By Lemma 2.3,

‖f ‖p
Fp,qφ

=
∫

C

|f (z)|pe−pφ(z)φq(z) dm(z)

≤ M
∫

|z|≥R1
|f (z)|pe−pφ(z)φq(z) dm(z)

≤ M
∫ 2π

0

∫ ∞

R1

(
D1

φ1/2(r)
r

exp
(
D2φ

1/2(r)r1−1/k
))p

e−pφ(r)φq(r)r dr dθ

≤ MDp
1

∫ 2π

0

∫ ∞

R1

(
φp/2+q(r)

rp−1 exp
(
p
(
D2φ

1/2(r)r1−1/k − φ(r)
)))

dr dθ
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≤ 2πMDp
1

∫ ∞

R1

(
φp/2+q(r)

rp−1 exp
(
p
(
D2φ

1/2(r)r1−1/k − φ(r)
)))

dr,

where R1 = max{R,R′}. Since D2r1−1/k − φ1/2(r) < −1 for r > R1,

‖f ‖p
Fp,qφ

≤ 2πMDp
1

∫ ∞

R1

(
φp/2+q(r)

rp−1 e−pφ1/2(r)
)
dr < ∞.

Therefore, f ∈ Fp,qφ . �

3. Sufficient conditions for solutions of Equation (2) to be in someweighted
Fock spaces

The research of Equation (2) in function spaces has been widely concerned. Sufficient con-
ditions for the coefficient function A(z) such that all solutions of Equation (2) belong to
Hardy spaces are first found by Pommerenke [22]. Later, many results of sufficient con-
ditions on all solutions belonging to some other function spaces are obtained and see
[12–14,16] for details.

In [7], sufficient conditions for the coefficientA(z) such that all solutions of Equation (2)
belong to Bloch spaces are shown by the reproducing formula of weighted Bergman spaces.
Thus, we try to generalize themethod of [7] to weighted Fock spaces. Luckily, the following
Littlewood-Paley type formula of some weighted Fock spaces is obtained in [5].

Littlewood-Paley Type Formula Suppose that φ is in the class I and there exists r0 > 0
such that φ′(r) �= 0 for r > r0. Moreover, assume that φ satisfies

lim
r→∞

re−pφ(r)

φ′(r)
= 0,

and

−∞ < lim inf
r→∞

1
r

(
r

φ′(r)

)′
≤ lim sup

r→∞
1
r

(
r

φ′(r)

)′
< p,

where p ≥ 1. Then for any entire function f (z),

C−1‖f ‖p
Fpφ

≤ |f (0)|p +
∫

C

|f ′(z)|p e−pφ(|z|)

(1 + φ′(|z|))p dm(z) ≤ C‖f ‖p
Fpφ
,

where C is positive constant only depending on p.
The following lemma is essential in the proofs of Theorems 1.3 and 1.4.

Lemma 3.1 ([5]): Suppose that φ is in the class I and f , h ∈ F2φ . Then

〈f , h〉 = f (0)h(0) +
∫

C

f ′(z)h′(z)(1 + φ′(z))−2e−2φ(z) dm(z).

Now we start to give the proofs of Theorems 1.3 and 1.4.
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Proof of Theorem 1.3: By all solutions f of Equation (2),

f ′(z) = −
∫ z

0
f (ζ )A(ζ ) dζ + f ′(0), z ∈ C.

If g satisfies the reproducing formula, g ∈ F2φ . Since f is an entire function, there exists a
finite Taylor expansion f (z) = ∑∞

j=0 ajz
j such that fn = ∑n

j=0 ajz
j ∈ F2φ . Thus,

f ′(z) = −
∫ z

0
lim
n→∞ fn(ζ )A(ζ ) dζ + f ′(0), z ∈ C.

By the reproducing formula, Fubini’s theorem and φ ∈ I ,

f ′(z) = −
∫ z

0

(
lim
n→∞

∫
C

fn(η)Kζ (η)e−2φ(η) dm(η)

)
A(ζ ) dζ + f ′(0)

= −
∫

C

lim
n→∞ fn(η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η) + f ′(0).

Using Kζ (0) = ∑∞
n=0 en(ζ )en(0) = δ−2

0 and Lemma 3.1,

f ′(z) = −
∫

C

lim
n→∞ f ′n(η)

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
) (

1 + φ′(η)
)−2 e−2φ(η) dm(η)

− lim
n→∞ fn(0)

(∫ z

0
Kζ (0)A(ζ ) dζ

)
+ f ′(0)

= −
∫

C

f ′(η)

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)

(1 + φ′(η))−2e−2φ(η) dm(η)

− f (0)
(∫ z

0
δ−2
0 A(ζ ) dζ

)
+ f ′(0).

It follows that

|f ′(z)|e−ϕ(z) ≤ e−ϕ(z)

∣∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)

e−2φ(η)+ϕ(η)

(1 + φ′(η))2
dm(η)

∣∣∣∣∣
· sup
η∈C

{
|f ′(η)|e−ϕ(η)

}
+
∣∣∣∣f (0)

∫ z

0
δ−2
0 A(ζ ) dζ

∣∣∣∣ e−ϕ(z) + |f ′(0)|.

Then,

‖f ′‖F∞
ϕ

≤ sup
z∈C

{∣∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)

e−2φ(η)+ϕ(z)

(1 + φ′(η))2
dm(η)

∣∣∣∣∣ e−ϕ(z)

}

· ‖f ′‖F∞
ϕ

+ sup
z∈C

{∣∣∣∣f (0)
(∫ z

0
δ−2
0 A(ζ ) dζ

)∣∣∣∣ e−ϕ(z)
}

+ |f ′(0)|.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 205

Thus,

‖f ′‖F∞
ϕ

(
1 − sup

z∈C

{∣∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)

e−2φ(η)+ϕ(η)

(1 + φ′(η))2
dm(η)

∣∣∣∣∣ e−ϕ(z)

})

≤ sup
z∈C

{∣∣∣∣f (0)
(∫ z

0
δ−2
0 A(ζ ) dζ

)∣∣∣∣ e−ϕ(z)
}

+ |f ′(0)|.

If ‖f ′‖F∞
ϕ

= ∞, it is in contradiction to the condition of Theorem 1.3. Therefore,

‖f ′‖F∞
ϕ

≤ 1
1 − TK(A)

(
sup
z∈C

{∣∣∣∣f (0)
(∫ z

0
δ−2
0 A(ζ ) dζ

)∣∣∣∣ e−ϕ(z)
}

+ |f ′(0)|
)

< ∞,

and f ′ ∈ F∞
ϕ . �

We have two natural corollaries by Theorem 1.3 and their proofs are omitted.

Corollary 3.2: Let φ be in the class I and A be an entire function. Suppose that
| ∫ z

0 A(ζ ) dζ |e−φ(z) is bounded in z ∈ C and

XK(A) = sup
z∈C

{∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
) (

1 + φ′(η)
)−2 e−φ(η) dm(η)

∣∣∣∣ e−φ(z)
}

< 1.

Then the derivative f ′ of each solution f of Equation (2) belongs to F∞
φ .

Corollary 3.3: Let φ be in the class I and A be an entire function. Suppose that
| ∫ z

0 A(ζ ) dζ |e−(1/2)|z|2 is bounded in z ∈ C and

YK(A) = sup
z∈C

{∣∣∣∣∣
∫

C

(∫ z

0
K ′

ζ (η)A(ζ ) dζ
)
e−2φ(η)+(1/2)|η|2

(1 + φ′(η))2
dm(η)

∣∣∣∣∣ e−(1/2)|z|2
}

< 1.

Then the derivative f ′ of each solution f of Equation (2) belongs to F∞.

Proof of Theorem 1.4: By the proof of Theorem 1.3,

f ′(z) = −
∫

C

lim
n→∞ fn(η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η) + f ′(0)

= −
∫

C

f (η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η) + f ′(0).

Then,

|f ′(z)|2 ≤ 2

(∣∣∣∣
∫

C

f (η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η)

∣∣∣∣
2
+ |f ′(0)|2

)
.
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Since the condition of Theorem 1.4 satisfies the Littlewood-Paley type formula,

‖f ‖2F2φ ≤ C

(
|f (0)|2 +

∫
C

|f ′(z)|2 e−2φ(|z|)

(1 + φ′(|z|))2 dm(z)

)

≤ 2C

(
|f (0)|2 +

∫
C

∣∣∣∣
∫

C

f (η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η)

∣∣∣∣
2

· e−2φ(|z|)

(1 + φ′(|z|))2 dm(z) + |f ′(0)|2
∫

C

e−2φ(|z|)

(1 + φ′(|z|))2 dm(z)

)
.

By the Littlewood-Paley type formula,∫
C

e−2φ(|z|)

(1 + φ′(|z|))2 dm(z) ≤ C‖z‖2F2φ .

By Lemma 2.2, there exists a positive numberM such that ‖z‖2F2φ < M. Thus,

‖f ‖2F2φ ≤ P + 2C
∫

C

∣∣∣∣
∫

C

f (η)e−2φ(η)

(∫ z

0
Kζ (η)A(ζ ) dζ

)
dm(η)

∣∣∣∣
2 e−2φ(|z|)

(1 + φ′(|z|))2 dm(z)

≤ P + 2C
∫

C

(∫
C

∣∣∣∣f (η)e−2φ(η)

∫ z

0
Kζ (η)A(ζ ) dζ

∣∣∣∣ dm(η)

)2 e−2φ(|z|)

(1 + φ′(|z|))2 dm(z),

where P = 2C(|f (0)|2 + |f ′(0)|CM). By the Cauchy-Schwarzian inequality,

‖f ‖2F2φ ≤ P + 2C
∫

C

(∫
C

∣∣f (η)
∣∣2 e−2φ(η) dm(η)

)

·
(∫

C

e−2φ(η)

∣∣∣∣
∫ z

0
Kζ (η)A(ζ ) dζ

∣∣∣∣
2
dm(η)

)
e−2φ(|z|)

(1 + φ′(|z|))2 dm(z)

≤ P + 2C‖f ‖2F2φ
∫

C

(∫
C

e−2φ(η)

∣∣∣∣
∫ z

0
Kζ (η)A(ζ ) dζ

∣∣∣∣
2
dm(η)

)
e−2φ(|z|)

(1 + φ′(|z|))2 dm(z).

Since

ZK(A) =
∫

C

(∫
C

e−2φ(η)

∣∣∣∣
∫ z

0
Kζ (η)A(ζ ) dζ

∣∣∣∣
2
dm(η)

)
e−2φ(|z|)

(1 + φ′(|z|))2 dm(z),

then

‖f ‖2F2φ (1 − 2CZK(A)) ≤ P.

If ‖f ‖2F2φ = ∞, it is in contradiction to the condition of Theorem 1.4. Therefore,

‖f ‖2F2φ <
P

1 − 2CZK(A)
< ∞,

and f ∈ F2φ . �
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