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On injectivity radius in configuration space and in moduli
space

Hiroshige Shiga

Abstract. We shall estimate the injectivity radius in the configuration space
and in the moduli space in terms of the hyperbolic geometry.

1. Introduction

Let n be an integer greater than three. We consider the space of ordered n
points of the Riemann sphere C modulo the action of Mobius transformations. We
call the space the configuration spaceof n points and denote it byMn (See §2 for the
precise definition). The configuration space Mn is obtained from the Teichmiiller
space of the Riemann sphere with n punctures like the moduli space. Both spaces,
the configuration space and the moduli space, are endowed with a natural distance,
the Teichmiiller distance. We are interested in the geometry of both spaces with
respect to the Teichmiiller distance. Especially, we focus on the injectivity radius
in those spaces.

Let (M, d) be a metric space. The injectivity radius at p €M is the shortest
length of non-trivial closed curves passing through p. In this paper, we shall esti
mate the injectivity radius at a point in the configuration space and in the moduli
space in terms of the hyperbolic geometry of the Riemann surface for the point.
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2. Preliminaries and main results

2.1. Moduli space and configuration space. Let Xo be a Riemann surface
of type (#, n), that is, Xo is a Riemann surface of genus g with n punctures. We
always assume that 2g —2 + n > 0. Hence, Xo admits the hyperboli metric.

We consider a pair (X, /) of a Riemann surface X and a quasiconformal map
ping / from X0 onto X. Two such pairs (X;, fi) (i = 1,2) are equivalent if there
exists a conformal mapping h : Xi —> X2 which is homotopic to fi o /-f1. We de
note by [X, /] the equivalence class represented by (X, /). The set of all equivalence
classes [X, /] is called the Teichmiiller space of X0 and it is denoted by T(X0).
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For any points [Xi.fi] (i = 1,2), we define the Teichmiiller distance between
them by

dr([*i, fi], [X*M) =\ inf log*(/),
where the infimum is taken over all quasiconformal mapping from Xi to X2 homo-
topic to /2 o /j-1 and K(f) is the maximal dilatation of /. It is known that the
Teichmiiller space is a complex manifold with dimension 3g —3 + n and the Te
ichmiiller distance coincides with the Kobayashi distance. It is also known that the
mapping class group Mod(Xo), the group of homotopy classes of quasiconformal
selfmaps of Xo, is the biholomorphic automorphisms of T(Xo). In fact, a mapping
class x<t> of a quasiconformal selfmap <f> of Xo acts on T(Xq) by

x4[X,f]) = [X,fo<f,-1}.
It is easy to see that the action is well-defined and x<f> is isometric with respect to the
Teichmiiller distance. Moreover,Mod(Xo) acts on T(Xo) properly discontinuously
and the quotient space M(Xo) := T(X0)/Mod(X0) which is called the moduli space
is a complex orbifold with dimension 3g —3 + n. Since Mod(Xo) is the isometry
group of T(Xo), the Teichmiiller distance is projected to the moduli space. We use
the same symbol dr as the projected distance on M(Xo).

For n > 4, we consider ordered n-tuples (21,22* •••Zn) of distinct points of C.
Such two n-tuples (zi, Z2> •••, %n) and (wi, W2,..., wn) are equivalent if there exists
a Mobius transformation cp such that ip(zi) = Wi (i = 1,2,..., n). The configuration
space Mn is the set of all equivalence classes.

Since there exists a Mobius transformation (p such that ip(zn-2) = 0, ip(zn-i) =
1 and ip(zn) = 00, the space Mn is identified with the set of ordered (n —3)-
tuples (zi, Z2>. •. zns) of distinct points in C \ {0,1}. In this paper, we use this
identification for Mn.

The configuration space Mn is endowed with a natural distance, the Te
ichmiiller distance dT,n- For any two points pj = (z{, z%, •. -^-3) U = 1?2), the
Teichmiiller distance between them is defined by

dr,n(pi,P2) = -inf logif(/),

where the infimum is taken over all quasiconformal self mappings / of C with
/(0) = 0, /(l) = 1 and f(z}) = zf (i = 1,2,... ,n - 3), and K(f) is the maximal
dilatation of /.

2.2. Mapping class group. Here, we present the Bers-Thurston classifica
tion of mapping classes.

Let Xo be a Riemann surface of finite type and (j): Xo -» Xo a quasiconformal
selfmap of Xo. We say that (j) is reduced if there exists a finite number of non-trivial
simple close curves ci, C2,..., c* on Xo satisfying;

(1) a HCj = 0 if i ^ j;
(2) each q is not homotopic to a puncture of Xo;
(3) <j)(ci) is equal to some Cj (i = 1,2,..., k).

If 4> is reduced for C = {ci, C2,..., Ck] as above, the mapping <j> defines a permuta
tion of the set of connected components of Xo \ {ci, C2,..., c^}. We denote by Sj
(j = 1,2,... ,^) such a connected component. Then, there exists m GN such that
(j)m fixes every 5^. We take m as the minimal number with this property. We call
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4>rn the component map of 0. A reduced map is called completely reduced if the
component map (j)m is irreducible on each component Sj. A quasiconformal map
(f> : Xq —> Xo is called reducible if it is homotopic to a reduced mapping, and it is
called irreducible if it is not homotopic to a reducible mapping. It is known that
every reducible mapping is homotopic to a completely reduced mapping. Hereafter,
we suppose that </> is completely reduced if it is reducible.

For a quasiconformal self mapping (j) of Xo, we denote by x<t> the mapping class
represented by </>. Then we have the following classification;

Definition 2.1. For x<t> €Mod(X0),
(1) it is called elliptic if it is of finite order;
(2) it is called parabolic if it is of infinite order and the component map <j)m

is homotopic to a mapping of finite order on every Sj;
(3) it is called pseudo-hyperbolic if </> is reducible but x<f> is neither parabolic

nor elliptic;
(4) it is called hyperbolic if it is of infinite order and <\> is irreducible.

For x €Mod(Xo), we define

peT(Ao)

Then, the following is known [1];

Proposition 2.1. Let x be a mapping class of Xq. Then, the following hold;
(1) % is elliptic if x(p) = P for somep GT(X0);
(2) x i>s parabolic if a(x) = 0 but dr(p,x(p)) > 0 for anV P €T(Xq);
(3) x is pseudo-hyperbolic if a(x) > 0 but dr(p,x(p)) < a(x) for anV P €

T(X0);
(4) x i>s hyperbolic if a(x) > 0 anda(x) = dr(p,x(p)) for some p GT(X0).

2.3. Main results. We consider the injectivity radius in the moduli space
M(Xo) and the configuration space Mn.

The injectivity radius rp(Mn) ofMn at p GMn is the smallest length of non-
trivial curves passing through p in Mn with respect to the Teichmiiller distance.
On the other hand, since the moduli space M(Xo) is not a manifold, we define the
injectivity radius on M(Xo) by using the Teichmiiller space.

Let n : T(Xo) -> M(Xo) be the canonical projection. For p G M(X0), we
define the injectivity radius rp(M(Xo)) of M(Xo) at p by

rp(M(X0))= M dr(P,X+(P)),
X<t>eMod(X0)'\{id.}

where Mod(Xo)' is the set of non-elliptic elements of Mod(Xo) and P is a point in
T(X0) with U(P) = p. Noting that

MXi>(P),X+(Xl>(P))) =MPiX^X+XtiP)),
we verify that the above definition does not depend on the point P in n_1(p).

Before stating our theorems, we give a related result on the injectivity radius
in the configuration space by Yamanoi [6].

For p = (zi, z2, ••., Zns) €Mn, we set X(p) := C \ {0,1, zi,z2, ••., zn-3}.
Yamanoi recently shows the following result which gives an estimate of rp(Mn)
from below in terms of the hyperbolic structure of X(p).
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Theorem (Yamanoi). For any p GMn,
Lsp

50n

holds, if there is no essential annulus A in X(p) with Mod(A) > —̂ log£p
In [6], Yamanoi uses the above theorem to show that the Gol'dberg conjecture

in the Nevanlinna theory is true.
In this paper, we shall show the following;

Theorem 2.1. For any p GMn,

(2.2) min|log(2+V5),logi/^ +11<rp(Mn)
holds, where £p is the length of the shortest closed geodesic in X(p).

Remark 2.1. Theorem 2.1 has an advantage than Yamanoi's theorem since the
injectivity radius is estimated from below by a quatity independent of n. However,
the following result on the injectivity radius in the moduli space needs a quantity
which depends on the type of the Riemann surface Xo.

Theorem 2.2. LetXo be a Riemann surface of type (g, n) with 2g—2+ n > 0.
Then, for anyp = [Xp,fp] GM(Xo), we have

(2.3) M(^n)-1minilog2,log^ +l) 1<rP(M(X0)),
where M(g, n) = {SA(g —1) + 4n}(2# —2 4- n)\ and t,p is the length of the shortest
closed geodesies in Xp.

3. Proof of Theorem 2.1

Take a base point p0 = (^J,^,... ,zn_3) G Mn and fix it. We consider
the Teichmiiller space T(X(p0)) of X(p0)- Let PMod(X(p0)) denote a subgroup
of Mod(X(po)) consisting of mapping classes whose representatives fix each zf
(i = 1,2, ...,n —3) and 0,1, oo. We call it the pure mapping class group of
X(po)- The configuration space Mn is described by the pure mapping class group
PMod(X(p0)).

Proposition 3.1. The configuration space Mn is identified with the quotient
space T(X(p0))/PMod(X(po)).

Proof. We define a map tt : T(X(p0)) ->- Mn by

7r([X^]) = M^),^20),...,K4_3))-
Since w fixes 0,1 and oo, the mapping tt is well-defined. Also, it is easily seen that
it is surjective and 7r([X,w]) = 7r(x([X,w])) for any x €PMod(X(po)).

Suppose that 7r([Xuwi\) = 7r([X2,it;2])- Then,wi(zf) = w2(zf) (i = 1,2,... ,n-
3)andthemapping class x ofw±1ow2 belongs toPMod(X(po)). Since x([^2, ^2]) =
[Xi, tui], we conclude that Mn = T(X(p0))/PMod(X(p0)). •

From the above proposition, immediately we have;

(2-1) i*z < rP(Mn)
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Corollary 3.1. For any p GMn, we have

(3.1) rp(Mn)= inf dT(P,X(P)),
X€PMod(X(p0))\{td.}

where P GT(X(p0)) is a point ofn~1(p).

Let p = (zi,z2,... ,271-3) be a point in Mn. For P = [Xp,w] G 7r_1(p) C
T(X(p0)) and for X<f> GPMod(X(p0)) \ {id.}, we consider dT(P,X<fi(P))-

First all of all, we see that x</> is not elliptic. Indeed, if x<f> could be elliptic, then
there would exist a point Q GT(X(po)) such that x<t>(Q) = Q- Then, (j) is regarded
as a conformal mapping on the surface of Q, which is a Mobius transformation.
However, x<t> is a pure mapping class. Hence, the Mobius transformation must be
the identity and x<f> = id. It is a contradiction.

Suppose that x<f> 1S hyperbolic. Song [5] shows;

Proposition 3.2. Let <p : X(po) —> X(po) gives a hyperbolic pure mapping
class. Then

(3.2) K(4>) > 2+ y/b.

Hence, if x<j> is hyperbolic, then we have

(3.3) dr(P,x#(i,))>log(2 + >/5).
Next, we suppose that x<t> is of infinite order and that (j) is completely reduced.

Then there exist mutually disjoint non-trivial simple closed curves ci,C2,...,Cfc
on X(po) such that (f>(ci) = Cj for some j and Ci does not bound a puncture
(i = 1,2,..., fc). Suppose that Ci ^ Cj. Since c\ DCj = 0, the sets of punctures
bounded by Ci and by Cj are different from each other. It is absurd because <j> fixes
each puncture of Xo. Therefore, we conclude that </>(q) = Q (i = 1,2,..., n —3).
Since (j) determines a pure mapping class, we see that the mapping </> fixes every
connected component of X(po) \ {ci,C2,... ,Cfc) as well as every c^. This implies
that </> should be a composition of a product of Dehn twists about ci,c2,... ,c&
and a self-map of finite order in each component of Xo \ {ci, C2,.. •, c/J when x<t> is
parabolic. However, the mapping 0 is homotopic to the identity in each componet
of X0 \ {ci,C2,... ,c*J because x<t> is a pure mapping class and <j> fixes every Ci
(i = 1,2,..., fc). Therefore, we conclude that 0 is a product of Dehn twists abount
ci,c2,...,cfc.

Now, we present an estimate of the maximal dilatations of Dehn twists. Let X
be a hyperbolic Riemann surface possibly of infinite type. For a non-trivial simple
closed curve c C X which is not homotopic to a puncture of X, we denote by £x(c)
the hyperbolic length of the geodesic homotopic to c. We denote by tx (c) the Dehn
twist about c on X. Then, Matsuzaki [3] shows;

Proposition 3.3. Let ci,C2,... be mutually disjoint simple closed geodesies
on X. If a quasiconformal self mapping f of X is homotopic to a product of Dehn
twists nSi rx(ci)ni (rii GZ \ {0}), then

,3.4) K(f)>suJ(^-»'*^)\A"\
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Therefore, if x<f> is parabolic, then we have

(3.5) dT(P,x*(P))>

Finally, we suppose that x<t> is pseudo-hyperbolic. Then, a(x</>) > 0 and we
have a sequence {Pn}^=i of T(X(po)) such that

a(x<t>) < dT(Pn,x<f>(Pn))
and

lim dT(Pn,X<t>(Pn)) = a,(x4>)-
n—yoo

In fact, the sequence "converges" to a boundary point of the Teichmiiller space.
Here, we consider a Riemann surface Xo with nodes which is obtained from Xo by
squeezing each Ci to a node. It is not hard to see that the mapping (j) : Xo -> Xo
is projected to a mapping 0 : Xo —> Xo which keeps every node fixed. It is known
that the number a(x<t>) is obtained from the maximal dilatation of (j> on X*o.

Since x<j> is pseudo-hyperbolic, there exists a set of connected components of
Xo \ {nodes}, say 5, such that <j>\S : S —>• S is irreducible and of infinite order for
any S GS. Noting that Xo is of type (0, n), we see that S is also of type (0,5) for
some s G N. The mapping (j) determines a pure mapping class and fixes every c^.
Hence, 4>\S also determines a pure mapping class in S. Therefore, we may use the
theorem of Song, that is, we have an estimate;

log^(0|5)>log(2 + v/5).
Thus, we obtain

(3.6) a(x<t>) >inf ±logK$\S) >inf \ log(2 +y/Z).
s 2 s 2

From (3.2), (3.5) and (3.6), we have the desired result.

4. Proof of Theorem 2.2

If x £ Mod(Xo)' is hyperbolic, then it follows from a theorem of Penner [4]
that

(4.1) dT(plX(p))> l0g2120 - 12 + 4n

If X := X<j> is pseudo-hyperbolic, then there exist mutually disjoint simple closed
curves ci, C2,..., c& on Xo and m G N such that

(1) (j) is completely reduced for c±,C2,..., c^;
(2) (j)m keeps every connected component of Xo \ {ci, C2,..., Ck} fixed;
(3) the number m is the smallest one with the above property.

Then, we see that for some component S of X0 \ {ci, c2,..., c^}, (f)m\S : S -> 5 is
irreducible and of infinite order. Therefore, by using the same argument as in §3
and the theorem in [4] again, we verify that

log 2(4.2) dT(p^(p))>a(X^)> I2g- 12 + 4n'



CONFIGURATION SPACE AND TEICHMULLER SPACE 189

Since the number of components of Xo\{ci, C2,..., Cfc} is not greater than 2g—2-f-n
and </> gives a permutation of the set of components, we have m < (2g —2 -f n)\.
On the other hand,

m

4r(p,X?(p)) <E^(4_1W'4W) ^ ™b(P>X+(p))
3=1

because x<f> is an isometry with respect to the Teichmiiller distance. Therefore, we
have

(4-3) dT(P, x,(P)) >4(3g_3 +n)(2g_2 +n)r
Finally, we suppose that x<t> is parabolic. Then, we may take m GN and mu

tually disjoint simple closed curves Ci, C2,..., Ck in Xo as in the previous argument
while (j)m\S : S -> S is homotopic to a homeomorphism of finite order on every
connected component S of Xo \ {ci, C2,..., Cfc}. Thus, (j)7nrn is a product of Dehn
twists about ci,C2,... , c& for some m! G N. Since the Riemann surface Xo is of
type (g, n), the order m! should be less than 84(# —1) + n.

From [3], we conclude that

dr(p,xr'(P))^ \l0§ (§+1)-
By the same argument as above, we have

t2
r2(4.4) dr(p, X<f>(p)) > rn(g, n)"1 log -f + 1 ,

where m(g, n) = 2{84(g - 1) + n}(2g - 2 + n)\.
From (4.1), (4.3) and (4.4), we have the desired result.
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