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Exercise 2.1 The cross-ratio is defined as

cr(a, b, c, d) =
(a− b)(c− d)

(a− d)(c− b)
, a, b, c, d ∈ C.

Denote x = cr(a, b, c, d). Show that

(a) cr(c, b, a, d) =
1

x
,

(b) cr(d, b, c, a) = 1− x,

(c) cr(b, a, c, d) =
x

x− 1
,

(d) cr(a, b, c, d) = cr(c, d, a, b).

a

x

x− 1 b

1

x

dx

x− 1

c

1

x
1− x

By (a)–(d), it follows that permuting arguments changes the value according to the en-
closed diagram. Solution.

Exercise 2.2 Let x = cr(a, b, c, d). What is the value of

(a) cr(c, a, b, d)?

(b) cr(b, c, a, d)? Solution.

Exercise 2.3 Let a, b, c, d, x ∈ C be distinct. Show1 that

(a)
cr(a, b, c, d)

cr(x, b, c, d)
= cr(a, b, x, d),

(b) cr(a, b, c, d)− cr(x, b, c, d) =
cr(a, b, c, d)− 1

cr(a, c, d, x)
. Solution.

Exercise 2.4 The curvature of the metric ρ(z)|dz| at a point z is given by

K(z) = −(∆ log ρ(z))(z)

ρ2(z)
, where ∆ =

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2

is the Laplacian in the polar coordinates. Show that if

(2.1) ρ(z) = ρD(z) =
1

1− |z|2
,

then the curvature K(z) ≡ −4. Solution.

Exercise 2.5 For distinct a1, . . . , aq ∈ Rd, where d ≥ 1 and q ≥ 3, we set

X(a1, . . . , aq) = {z ∈ C \ {0, 1} ; ai(z) 6= aj(z) for i 6= j} .

Thus, X is the Riemann sphere with p punctures.

(a) Show that 3 ≤ p ≤ 2d× q(q − 1)

2
+ 3.

1 Identities (a) and (b) are needed in Yamanoi’s paper on pages 50 and 31, respectively.

1
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(b) Show2 that Ahyp(X(a1, . . . , aq)) =
π

2
(p− 2) ≤ 2dq2. Solution.

Exercise 2.6 For the unit disc D = {|z| < 1}, we define the hyperbolic density as

ρ(z) = ρD(z) =
1

1− |z|2
.

For other domains, the hyperbolic density can be calculated with the following formula.
If f : A→ B is conformal and g = f−1, then we obtain for the hyperbolic densities

ρB(z) = ρA(g(z))|g′(z)|.

For example, the map f : D → D(0, 2), f(z) = 2z is a conformal bijection. Its inverse is
g(z) = z/2. Now g′(z) = 1/2. We obtain

ρD(0,2)(z) = ρD(g(z))|g′(z)| = 1

1−
∣∣ z
2

∣∣2 · 1

2
=

2

22 − |z|2
.

(a) By using

a : D→ H = {0 < Im(z)} , a(z) = i
1 + z

1− z
,

show that

ρH(z) =
1

2 Im(z)
.

(b) By using

b : H→ L =
{
z ∈ C ; −π

2
< Im(z) <

π

2

}
, b(z) = log(−iz),

show that

ρL(z) =
1

2 cos Im(z)
.

(c) By using

c : L→ S = {z ∈ C ; 0 < Im(z) < λ} , c(z) =
(
z + i

π

2

) λ
π
,

show that

ρS(z) =
π

λ sin
(
π
λ

Im(z)
) .

(d) By using

d : S → A(0, 1, eλ) =
{
z ∈ C ; 1 < |z| < eλ

}
, d(z) = eiz,

show that

ρA(0,1,eλ)(z) =
π

2λ|z| sin
(
π
λ

log |z|
) .

In this case, d : S → A(0, 1, eλ) is not conformal, that is, an analytic bijection. However,
d is a so-called universal covering map. Also, in this case, it is possible to find a function
g such that d(g(z)) = z and proceed. Solution.

2Gauss-Bonnet theorem states that∫
M

K dA+

∫
∂M

kg ds = 2πχ(M).

In our case, M = X(a1, . . . , aq), K ≡ −4 and ∂M has measure zero.
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Exercise 2.7 (a) Show that as λ→∞,

ρS(z) =
π

λ sin
(
π
λ

Im(z)
) → 1

2 Im(z)
= ρH(z)

(b) Let R > 1. Show that as R→∞,

ρA(0,1,R) =
π/ logR

2λ sin (π log |z|/ logR)
→ 1

2|z| log |z|
= ρA(0,1,∞)(z)

(c) By using the map,

f : A(0, 1,∞)→ A(0, 0, 1), f(z) =
1

z
,

show that

ρA(0,0,1) =
1

2|z| log 1
|z|
.

Solution.

For the various domains in Exercises 2.6 and 2.7, see Figure 1 on the next page.
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ρD(z) = 1
1−|z|2 ρH(z) = 1

2 Im(z)

ρL(z) = 1
2 cos Im(z)

ρS(z) = π
2λ sin(π

λ
Im(z))

ρA(0,1,eλ)(z) = π
2λ|z| sin(π

λ
log |z|)

ρA(0,1,∞)(z) = 1
2|z| log |z|

ρA(0,0,1)(z) = 1
2|z| log 1

|z|

a(z) = i1+z
1−z

b(z) = log(−iz)

c(z) = (z + iπ
2
)λ
π

d(z) = eiz

λ→∞

z 7→ 1
z

λ→
∞

−iπ
2

iπ
2

iλ

1 eλ 1

1

Figure 2.1. Hyperbolic densities of various domains.

Solutions
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Solution 2.1. (a) We see that

cr(c, b, a, d) =
(c− b)(a− d)

(c− d)(a− b)
=

(
(a− b)(c− d)

(a− d)(c− b)

)−1
=

1

cr(a, b, c, d)
.

(b) We calculate

1− cr(a, b, c, d) = 1− (a− b)(c− d)

(a− d)(c− b)

=
(��ac− ab− dc+ZZdb)− (��ac− ad− bc+ZZbd)

(a− d)(c− b)

=
(a− c)(d− b)
(a− d)(b− c)

= cr(a, c, b, d)

=
(d− b)(c− a)

(d− a)(c− b)
= cr(d, b, c, a).

(c) Let cr(a, b, c, d) = x. By (a), we have

cr(c, b, a, d) =
1

x
.

Now, (b) yields

cr(c, a, b, d) = 1−
(

1

x

)
=
x− 1

x
.

Now, (a) yields

cr(b, a, c, d) =

(
x− 1

x

)−1
=

x

x− 1
.

(d) We see that

cr(c, d, a, b) =
(c− d)(a− b)
(c− b)(a− d)

=
(a− b)(c− d)

(a− d)(c− b)
= cr(a, b, c, d).

* * *

Solution 2.2. (a) Let y = cr(c, a, b, c). Then by the diagram, we have

cr(a, c, b, d) =
y

y − 1
.

Then by the diagram, we have

cr(a, b, c, d) = 1− y

y − 1
=
y − 1− y
y − 1

=
1

1− y
= x.

We solve

cr(c, a, b, c) = y =
x− 1

x
.

(b) Let y = cr(b, c, a, d). Then by the diagram, we have

cr(a, c, b, d) =
1

y
.

Then by the diagram, we have

cr(a, b, c, d) = 1− 1

y
= x.
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We solve

cr(b, c, a, d) = y =
1

1− x
.

* * *

Solution 2.3. (a) Let α = x. We calculate

cr(a, b, c, d)

cr(α, b, c, d)
=

(a− b)(c− d)

(a− d)(c− b)
:

(α− b)(c− d)

(α− d)(c− b)

=
(a− b)(α− d)

(a− d)(α− b)
= cr(a, b, α, d).

(b) We calculate

cr(a, b, c, d)− cr(α, b, c, d)

=
(a− b)(c− d)

(a− d)(c− b)
− (α− b)(c− d)

(α− d)(c− b)

=
c− d
c− b

× (a− b)(α− d)− (a− d)(α− b)
(a− d)(α− d)

=
c− d
c− b

× (��aα− ad− bα−ZZbd)− (��aα− ab− dα−ZZdb)
(a− d)(α− d)

=
c− d
c− b

× (a− α)(b− d)

(a− d)(α− d)

=
(b− d)(c− d)

(a− d)(c− b)
× a− α
α− d

(2.2)

and note

(2.3) cr(a, b, c, d)− 1 = − cr(a, c, b, d) = −(a− c)(b− d)

(a− d)(b− c)
=

(a− c)(b− d)

(a− d)(c− b)
By dividing (2.3) with (2.2), we obtain

cr(a, b, c, d)− 1

cr(a, b, c, d)− cr(α, b, c, d)
=

(a− c)(α− d)

(c− d)(a− α)
=

(a− c)(d− α)

(a− α)(d− c)
= cr(a, c, d, α).

This can be rewritten as

cr(a, b, c, d)− cr(α, b, c, d) =
cr(a, b, c, d)− 1

cr(a, c, d, α)
.

* * *

Solution 2.4. We recall that the Laplacian in polar coordinates is

(2.4) ∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
.

Hence, for

ρ(z) =
1

1− |z|2
=

1

1− r2
,

we obtain

log ρ(r) = − log(1− r2), (log ρ)r =
2r

1− r2
, (log ρ)rr =

2

1− r2
+

4r2

(1− r2)2
.
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By (2.4), we obtain

∆(log ρ) =

(
2

1− r2
+

4r2

(1− r2)2

)
+

2

1− r2
=

4

(1− r2)2

and consequently K(z) = −4.

If 3 the value distances would be scaled up by a factor of 2, K would have the value −1.

* * *

Solution 2.5. For distinct a1, . . . , aq ∈ Rd, where d ≥ 1 and q ≥ 3, we set

X(a1, . . . , aq) = {z ∈ C \ {0, 1} ; ai(z) 6= aj(z) for i 6= j} .

Thus, X is the Riemann sphere with p punctures.

(a) Claim: 3 ≤ p ≤ 2d× q(q − 1)

2
+ 3.

First, we see that, in every case, three points 0, 1,∞ /∈ X(a1, . . . , aq). Hence p ≥ 3 is
clear.

Second, let ak = pk/qk for k = 1, . . . , q. The condition

ai(z) =
pi(z)

qi(z)
=
pj(z)

qj(z)
= aj(z)

is equivalent to

pi(z)qj(z)− pj(z)qi(z) = 0,

which has at most 2d solutions, since the function on the left is a polynomial of degree at
most 2d. The number of pairs (ai, aj), i 6= j, is(

q

2

)
=

q!

2!(q − 2)!
=
q(q − 1)

2
.

Therefore

ai(z) = aj(z), i 6= j,

has at most

2d · q(q − 1)

2
solutions. No such solution z needs to be 0, 1,∞, so there are three more points. There-
fore, in conclusion,

p ≤ 2d× q(q − 1)

2
+ 3.

(b) This exercise was quite difficult, since the Gauss-Bonnet theorem is not very familiar.
We will go through the background in the formula, take a few examples of its use and
then solve our exercise.

3It can be shown (see Hubbard’s book about Teichmüller spaces) that K(x) at a point x is a number
such that

Area(Dr) = π

(
r2 − 1

12
K(x)r4

)
+ o(r4).

This shows that if r = 2s, then Ks = 4Kr.
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Background. The Gauss-Bonnet theorem is∫
M

K dA+

∫
∂M

kg ds = 2πχ(M),

where

• M is a surface;
• ∂M is its boundary;
• K is the Gaussian curvature of M ;
• kg is the geodesic curvature of ∂M ;
• χ(M) is the Euler characteristic of M (usually χ(M) = 2(1−#holes).

Curvature in plane. If a plane curve is given as y = g(x), then its curvature is

κ =
g′′

(1 + (g′)2)3/2
.

Example. We study the upper half of

x2 + y2 = r2.

In this case,

g(x) = −
√
r2 − x2, g′(x) =

x√
r2 − x2

, g′′(x) =
r2

(r2 − x2)3/2
.

Hence

κ(x) =
r2

(r2 − x2)3/2

/(
r2

r2 − x2

)3/2

=
1

r
.

We see that if a circle has small radius r, then its curvature |κ| will be large.

Example. Let a > 0 and

y = g(x) =
x2

a
.

Then the curve is a parabola going through points (±a, a) and (0, 0). We have

g′(x) =
2x

a
, g′′(x) =

2

a
,

and consquently

κ(x) =
2

a

/(
1 +

4x2

a2

)3/2

.

As a special case

κ(0) =
2

a
,

which is the same value as of a circle with r = a
2
. We see that C(a/2, a/2) will touch the

points (0, a) and (0, 0). We draw Figure 2.2.

Curvature of a surface. If we have a smooth surface z = g(x, y), then for a point
(x0, y0) on the surface, we can find crosscuts such that on one crosscut the curvature is
maximal and on the other minimal. That is,

z = g(x, α(x)), z = g(x, β(x)),

where α, β are linear functions, such that (x0, y0) = (x0, α(x0)) = (x0, β(x0)). Now for
the plane curve

z = g(x, α(x))
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(−a, 0) (a, 0)

(a/2, 0)

(a, a)

Figure 2.2. Parabola and an osculating /“kissing” circle.

we have κ(x0) = κmax. Similarly for the other crosscut, κ(x0) = κmin.

Definition. The Gaussian curvature K(x0, y0) = κmax · κmin.

This is the same curvature as given by the formula

K = −(∆ log ρ)

ρ2
,

but unfortunately, we cannot prove this here.

Example. Sphere of radius r > 0 has on the lower half

κmax = κmin =
1

r

and therefore K = κmaxκmin = 1
r2

.

On the upper half,

K = κmaxκmin =

(
−1

r

)2

=
1

r2
.

Hence, the Gaussian curvature of a sphere is 1/r2.

Example.(a) The surface

z =
x2

a
+
y2

b
, 0 < a < b,

satisfies

K(0) = κmax(0)κmin(0) =
2

a

2

b
=

4

ab
.

Locally the surface is “similar” to a sphere.

(b) The surface

z =
x2

a
− y2

b
, 0 < a < b,

satisfies

K(0) = κmax(0)κmin(0) =
2

a
· −2

b
= − 4

ab
.

Locally the surface is a saddle surface.
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Example.

ρ(z) =
1

1− |z|2
→ K = −4

and

ρ(z) =
1

1 + |z|2
→ K = 4.

Geodesic curvature. In plane

kg = κ =
g′′

(1 + (g′)2)3/2
.

On some other surface, geodesic is the “locally shortest path between two points”.

Example. The shortest path (around 300km) between Joensuu and Helsinki by plane is
along a circle, whose center is in the center of Earth. So this path is a geodesic on Earth.

A person traveling from Joensuu to Helsinki can also “choose poorly” to travel through
North pole, over Pacific ocean etc. and travel a long path (around 40000km-300km).

Example. Consider a circle of radius r in the plane, that is, C(0, r) = ∂M . Then∫
∂M

kg ds = kg

∫
∂M

ds = kglength(∂M) =
1

r
· 2πr = 2π,

and we see that this integral is independent of the radius of the circle.

Example. Let γ ⊂ R2 be a path

{x = r,−3 ≤ y ≤ 0} ∪
{

(r cos θ, r sin θ) ; 0 ≤ θ ≤ π

2

}
∪ {y = r,−3 ≤ x ≤ 0} .

Then on the straight parts of the path γ, kg = 0. On the other hand, on the circular part,
kg = 1

r
. The path γ is smooth. We have∫

∂M

kg ds =
π

2
.

By similar reasoning, as a limiting case, when r → 0, we obtain that if two lines L1, L2

meet in an angle α, then ∫
L1∪L2

kg ds = α.

Euler characteristic. A cube has

• vertices: V = 8;
• edges: E = 12;
• faces: F = 6.

By definition,

χ(M) = V − E + F = 8− 12 + 6 = 2.

A tetrahedron has

• vertices: V = 4;
• edges: E = 6;
• faces: F = 4.
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Hence
χ(M) = V − E + F = 4− 6 + 4 = 2.

It can be shown that all solids “with no holes” have Euler characteristic χ(M) = 2.

Example. The doughnut

([0, 3]× [0, 3]× [0, 1]) \ ([1, 2]× [1, 2]× [0, 1])

Has V = 8 + 8 = 16 and F = 6 + 4 = 10. We require that the faces are simply connected
and hence make the cuts (0, 0, 0)−−(1, 1, 0) and (0, 0, 1)−−(1, 1, 1). After this, we have
E = 12 + 12 + 2 = 26. Hence

χ(M) = 16− 26 + 10 = 0.

We see that for solids
χ(M) = 2(1−#holes).

Since a surface can be triangulated, this allows a definition for χ(M) for general surface
M .

If we have a simply connected plane region, then χ(M) = 1, which is seen by considering
a triangle:

χ(triangle) = V − E + F = 3− 3 + 1 = 1.

If we have a surface with punctures, then two punctures form one hole. We have

χ(M) = 2(1−#holes) = 2−#punctures.

Gauss-Bonnet theorem. We will now verify Gauss-Bonnet theorem in a few examples.

Example. Consider a sphere M of radius r. Then ∂M = ∅. We have∫
M

K +

∫
∂M

=
1

r2
· area(M) + 0 =

1

r2
· 4πr2 = 4π = 2πχ(M),

since χ(M) = 2. The Gauss-Bonnet theorem is seen to be valid.

Example. Consider a half sphere M of radius r. Then ∂M is a circle, which is a geodesic
on the sphere. Hence kg ≡ 0. We have∫

M

K +

∫
∂M

=
1

r2
· area(M) + 0 =

1

r2
· 4πr2

2
= 2π = 2πχ(M),

since now χ(M) = 1. The Gauss-Bonnet theorem is seen to be valid.

Example. Let M be a 1/8-part of a of radius r. Then ∂M consists of 3 geodesics which
meet in angles π/2. Therefore∫

M

K +

∫
∂M

=
1

r2
· area(M) + 3

π

2
=

1

r2
· 4πr2

8
+

3π

2
= 2π = 2πχ(M),

since χ(M) = 1. The Gauss-Bonnet theorem is seen to be valid.

Solution of the exercise.

Now our surface is M = X = C\{z1, . . . , zp}, the Riemann sphere with p punctures. Now
∂X consists of discrete finite set of points and has measure zero. We have∫

X

K dA0

∫
∂X

kg ds = −4hyp-area(X) + 0 = 2πχ(X),
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which yields

hyp-area(X) =
2π

−4
χ(X) =

π

2
(−χ(X)).

Now, χ(X) = 2−#punctures = 2− p and therefore

hyp-area(X) =
π

2
(p− 2).

Since

p ≤ 2d
q(q − 1)

2
+ 3,

we have

p− 2 = 2d
q2

2
− 2d

(
−1

2

)
+ 1 ≤ dq2.

Hence

hyp-area(X) =
π

4
2(p− 2) ≤ 1 · 2dq2 = 2dq2.

* * *

Solution 2.6. (a) The map a : D→ H,

a(z) = i
1 + z

1− z
is a bijection. Namely, 0 and ∞ are mirror images with respect to ∂D. Their images
a(0) = i and a(∞) = −i are mirror images with respect to R. Hence, a(∂D) = R and
a(0) = i, so we must have a(D) = H.

Therefore

g(z) = a−1(z) =
z − i
z + i

, g′(z) =
2i

(z + i)2

We have

ρH(z) = ρD(g(z))|g′(z)| =
2

|z+i|2

1−
∣∣ z−i
z+i

∣∣ =
2

|z + i|2 − |z − i|2
.

Here
|z + i|2 − |z − i|2 = 4 Re(iz) = 4 Im(z).

Hence

ρH(z) =
1

2 Im(z)
.

(b) Let

L =
{
z ∈ C ; −π

2
< Im(z) <

π

2

}
.

Then b : H→ L, b(z) = log(−iz) is conformal. Hence

g(z) = b−1(z) = iez, g′(z) = iez.

Now

ρL(z) = ρH(g(z))|g′(z)| = |iez|
2 Im(iez)

.

If z = x+ iy, then
ez = exeiy = ex(cos(y) + i sin(y)),
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and therefore

|iez| = ex, Im(iez) = ex cos(y),

so that

ρL(z) =
1

2 cos Im(z)
.

We note that

ρD(z) =
1

1− |z|2
→∞, z → 1−,

and cos(π/2) = cos(−π/2) = 0. Hence, the hyperbolic density is unbounded as the point
approaches the boundary of the domain.

(c) Let

S = {z ∈ C ; 0 < Im(z) < λ} .
Then c : L→ S,

c(z) = (z + i
π

2
) · λ
π

is conformal. Hence

g(z) = z
π

λ
− iπ

2
, g′(z) =

π

λ
.

We see that

Im(g(z)) = Im
(
z
π

λ
− iπ

2

)
and

cos(x− π/2) = cos(x) cos(−π/2)− sin(x) sin(−π/2) = sinx.

Therefore

ρS(z) = ρL(g(z))|g′(z)| = π

2λ cos
(
π
λ

Im(z)− π
2

) =
π

2λ sin(π Im(z)/λ)
.

(d) Let S = {z ∈ C ; 0 < Im(z) < λ}. Then d : S → C, d(z) = e−iz is a so-called universal
covering map to

d(S) = A = A(0, 1, eλ) =
{
z ∈ C ; 1 < |z| < eλ

}
.

We obtain

ρA(d(z)) = ρS(z)|d′(z)| = ρL(z) =
π

2λ sin
(
π
λ

Im(z)
) .

Let fix z and let w = d(z) = e−iz. One such w satisfies z = i log(w). Now Im(z) = w and
|d′(z)| = | − ie−iz| = | − iw| = |w|. We obtain

ρA(w) =
π

2|w|λ sin
(
π
λ

log |w|
) .

Calculating hyperbolic densities for general domains is difficult. It has been found that 4

ρC\{0,1}(z) =
2π

|z||1− z|

(∫
C

dm(ζ)

|ζ||1− ζ||ζ − z|

)−1
.

However, this expression has not been very useful for applications. Instead, estimates are
needed.

* * *

4S. Agard, Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I, No.
413, 1968, 12 pp.



14

Solution 2.7. (a) Since

lim
x→0

sinx

x
= 1,

we have

lim
λ→∞

π/λ

2 sin(π
λ

Im(z))
=

1

2 Im(z)
.

(b) Since

ρA(0,1,R)(z) =

π log |z|
logR

2 sin
(
π log |z|
logR

)
|z| log |z|

,

we have for A(0, 1,∞) = {1 < |z|} that

ρA(0,1,∞)(z) =
|dz|

2|z| log |z|
.

(c) By doing a change of variable z = 1/w, |dz| = |dw|/|w|2, we obtain

ρD∗(z) =
|dw|

2|w| log 1
|w|
.


