Research Seminar in Mathematics 2019
Exercise session: 26.4. at 12-14 in room M105

Exercise 2.1 The cross-ratio is defined as

(a=B)(c—d) -
b,c,d) = ————= b,c,d € C.
cr(a, b, c,d) (a—d)c—D) a,b,c,d €
Denote = = cr(a, b, ¢, d). Show that v
1 r—1 b
(a) cr(e,b,a,d) = =, ¢
T
b) cr(d.b, c.a) = 1 N
()CI‘(, ,c,a)— -, T T
T . .
(©) ex(b.acd) = ——. e
(d) er(a,b,c,d) = cr(e,d, a,b). v—1

By (a)—(d), it follows that permuting arguments changes the value according to the en-

closed diagram.
Exercise 2.2 Let z = cr(a,b, ¢,d). What is the value of

(a) cr(c,a,b,d)?

(b) er(b,c,a,d)?
Exercise 2.3 Let a,b,c,d,z € C be distinct. Showﬂ that

cr(a, b, c,d)

— = = b,x,d
(&) cr(z, b, ¢, d) cr(a, b,z, d),

b,c,d) —1
(b) cr(a,b,c,d) — cr(z,b,c,d) = Cri:?(’a:zd,)x) : Solution.
Exercise 2.4 The curvature of the metric p(z)|dz| at a point z is given by
(Alog p())(2) *f 10f 13f
K(z)=— here A = —- + —— + ——=
(2) p%(2) ) WHETe or? + r or + r2 002
is the Laplacian in the polar coordinates. Show that if
1

2.1 = -
2.) ) = i) = 7o
then the curvature K(z) = —4.

Exercise 2.5 For distinct ay,...,a, € R4, where d > 1 and ¢ > 3, we set
X(ar,...,ay) = {2 € C\{0,1} ; a;(2) # a;(z) for i # j}.

Thus, X is the Riemann sphere with p punctures.
-1
(a) Show that 3 < p < 2d x %+3.

! Identities (a) and (b) are needed in Yamanoi’s paper on pages 50 and 31, respectively.
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(b) Sho that Augp(X (a1, a)) = 5(p — 2) < 2dg* Solution.
Exercise 2.6 For the unit disc D = {|z| < 1}, we define the hyperbolic density as
1
p(z) = pn(z) = 1_—|Z|2

For other domains, the hyperbolic density can be calculated with the following formula.
If f: A— B is conformal and g = f~!, then we obtain for the hyperbolic densities

pB(2) = pal9(2))lg' ().

For example, the map f: D — D(0,2), f(z) = 2z is a conformal bijection. Its inverse is
g(z) = z/2. Now ¢'(2) = 1/2. We obtain

1 1 2
pPp2)(2) = po(9(2))ld ()] = A2
D(0,2) D 1_‘%|2 2 22—‘z|2
(a) By using
1+z
a:D—H={0<Im(z)}, a(z)zzl :
—z
show that
() = 50
P ~ 2Im(z)

(b) By using
T ™ .
b.H—>L—{z€<C,—§<Im(z)<§}, b(2) = log(—iz),

show that
(2) .
Z) = .
Pr 2 cosIm(z)
(c) By using
™ A
¢c:L—=S={2€C;0<Im(z) <A}, ¢fz)= (Z“§> 2,
show that
() = i
ps Asin (§ Im(z)) '

(d) By using
d:S— A0, L, ={z€C;1<|z|<e}, d(z)=¢e",

show that
T

B 2| z]sin (§ log |2])

PA0,1,e*) (Z)

In this case, d : S — A(0,1,¢") is not conformal, that is, an analytic bijection. However,
d is a so-called universal covering map. Also, in this case, it is possible to find a function
g such that d(g(z)) = z and proceed.

2Gauss-Bonnet theorem states that
/ KdA+/ kgds = 2mx(M).
M oM

In our case, M = X (a1,...,aq), K = —4 and OM has measure zero.



Exercise 2.7 (a) Show that as A — oo,
o o = pu(2)
~ Asin(ZIm(z))  2Im(z) P
(b) Let R > 1. Show that as R — oo,
7/log R 1
- —
2\sin (mlog |z|/log R)  2|z|log |z|

ps(z)

PA0,1,R) = = PA(0,1,00) (Z)

(¢) By using the map,

[ A0,1,00) = A(0,0,1),  f(z) = -,

z

show that 1

PA0,0,1) = m

yolution.

For the various domains in Exercises [2.6] and [2.7], see Figure 1 on the next page.



po(z) = pu(z) = ﬁ(?f)

- a(z) = zifz
_

ps(z) = m

_ 1
c(z) =(z+ Zg)% pL(Z) " 2cosIm(z)
A
d(z) = e*
1
2|z|log |z|
A — 00
z 2
_ ™
pA(O,l,e*)(Z) ~ 2)\|z]sin(§ log|z])
_ 1

FicURE 2.1. Hyperbolic densities of various domains.

Solutions



Solution (a) We see that

C(e=b)(a—d)  [(a=b)(c—d)\ " _ 1
o) = £ =5 = (G ) ~swien

(b) We calculate

B (a—b)(c—d)

1—cr(a,b,c,d)—1—m

_ (ac—ab —dc+db) — (ac— ad — bc + bd)
(a —d)(c—b)

)
—d)

a —

Q

= cr(a,c,b,d)

@

(d—1b
(b
(c = cr(d, b, c,a).

— | — ~— | ~—

_

-~ —c
_([d=b)(c—a

e

(c) Let cr(a,b,c,d) = z. By (a), we have

cr(e, b, a,d) =

SR

Now, (b) yields

Now, (a) yields

(d) We see that

Solution [2.2] (a) Let y = cr(c, a,b,c). Then by the diagram, we have
cr(a,c,b,d) = ——.

Then by the diagram, we have

—1- 1
cr(a,b,c,d) =1— A Y =z
y—1 y—1 -y

We solve

cr(c,a,b,¢) =y =

(b) Let y = cr(b, ¢, a,d). Then by the diagram, we have

1
cr(a, c,b,d) = —.
Y
Then by the diagram, we have
1
cr(a,b,c,d)=1——=u.

Y
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We solve

Solution (a) Let a = z. We calculate

cr(a, b, c,d) _ (a=0b)(c—d) (a—=>b)(c—d)

cr(a,be,d)  (a—d)(c—0b) (a—d)(c—b)
_ la =X _d>—cra o
(a—d)(a—1b) (ab,a,d).

(b) We calculate
cr(a, b, c,d) — cr(a, b, ¢, d)
_ (a=b)(c—d) (a—b)(c—d
(a—d)(c—b) (a—d)(c—Db)
c—d (a—b(a—d)—(a—d)(a—D0)

T " (a—d)(a—d
(2.2) _c—d _ (aar—ad — ba —Dd) — (aar — ab — da — ih)
T " (a—d)(a—d

c—al>< (a —a)(b—d)
c—b (a—d)(a—d)
(b—d)(c—d) Lo
(a—d)(c—b) a-—d

and note
cr(a,b,c,d) — 1 =—cr(a,c :_(a—c)(b—d):(a—c)(b—d)
(23) (a,b,¢,d) =1 (a,¢.b,d) (a—d)(b—c) (a—d)(c—0)
By dividing with , we obtain
cr(a,b,c,d) — 1 _(a—c)la—d) (a—c)(d—a)

cr(a,b,c,d) — cr(a,b,c,d)  (c—d)(a—a) (a—a)ld—-c)
= cr(a, ¢, d, a).

This can be rewritten as
cr(a,b,c,d) — 1

cr(a,c,d, )

cr(a, b, c,d) — cr(a, b, c,d) =
* % ok

Solution We recall that the Laplacian in polar coordinates is
0? 10 1 0?
fo10f 10

2.4 A =gt rar T g
(2.4) ! or? ror  r?00?
Hence, for
1 1
pz) = 1— |22 12
we obtain
2r 2 4r?
) _
log p(r) = —log(1 — %), (logp), = 1_,2 (log p)er = 1—r2 * (1—1r2)%



By (2.4), we obtain

+1—r2_ (1 —1r2)2

2 472 2 4
A(log p) = <1 — 2 + 1= r2)2>

and consequently K(z) = —4.
If E| the value distances would be scaled up by a factor of 2, K would have the value —1.

* % ok

Solution For distinct ay, ..., a, € Rq, where d > 1 and ¢ > 3, we set
X(a,...,a,) ={2€ C\{0,1} ; a;(2) # a;(z) for i # j}.

Thus, X is the Riemann sphere with p punctures.

(¢—1)
2

(a) Claim: 3 < p < 2d x q + 3.

First, we see that, in every case, three points 0,1,00 ¢ X(ay,...,a,). Hence p > 3 is
clear.

Second, let a, = py/qx for k =1,...,q. The condition
pi(z) _ pi2)
a;(z) = ——= =—=——= =a;(z
ETC e
is equivalent to
pi(2)q;(z) — pj(2)ai(2) = 0,

which has at most 2d solutions, since the function on the left is a polynomial of degree at
most 2d. The number of pairs (a;, a;), i # j, is

<g> N 2!(qqi 2)1 Q(qz_ =

az’(z):aj<z>> 17&]7

Therefore

has at most
-1
0. 44 1)
2
solutions. No such solution z needs to be 0, 1, 00, so there are three more points. There-
fore, in conclusion,
(¢—1)

p<2dx? 5 +3

(b) This exercise was quite difficult, since the Gauss-Bonnet theorem is not very familiar.
We will go through the background in the formula, take a few examples of its use and
then solve our exercise.

31t can be shown (see Hubbard’s book about Teichmiiller spaces) that K (x) at a point « is a number
such that

Area(D,) = <r2 - 112K(x)7"4) +o(rh).

This shows that if » = 2s, then K = 4K,..
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Background. The Gauss-Bonnet theorem is

/KdA+/ kyds = 2mx (M),
M oM

where

e M is a surface;

e OM is its boundary;

e K is the Gaussian curvature of M;

e kg is the geodesic curvature of dM;

e X(M) is the Euler characteristic of M (usually x(M) = 2(1 — #holes).

Curvature in plane. If a plane curve is given as y = g(z), then its curvature is

1

g
T+ (PP

Example. We study the upper half of

In this case,

Hence

r? r? 32
K(x) = (r2 — 22)3/2 r2 — p2 -

We see that if a circle has small radius r, then its curvature || will be large.

Example. Let a > 0 and
2

y=yg(x) = 0
Then the curve is a parabola going through points (fa,a) and (0,0). We have
2z 2
/ [ /" ——
g =2 gw =2
and consquently
2 422\
=2/ 14+
=) (1)
As a special case
R(O) )

e Q| N

which is the same value as of a circle with r =
points (0,a) and (0,0). We draw Figure [2.2]

. We see that C'(a/2,a/2) will touch the

Curvature of a surface. If we have a smooth surface z = g(z,y), then for a point
(0, Y0) on the surface, we can find crosscuts such that on one crosscut the curvature is
maximal and on the other minimal. That is,

z=g(x,a(2),  z=g(z b(2)),
where «, 3 are linear functions, such that (xg,y0) = (%o, a(x0)) = (x0, (x0)). Now for
the plane curve

z=g(x,a(z))



(—a,0) (a,0)

FIGURE 2.2. Parabola and an osculating /“kissing” circle.

we have K(z¢) = Kmax. Similarly for the other crosscut, x(zg) = Kmin-
Definition. The Gaussian curvature K (o, Yo) = Kmax * Kmin-

This is the same curvature as given by the formula
(Alog p)
p?

but unfortunately, we cannot prove this here.

K =-

Example. Sphere of radius > 0 has on the lower half
1

Rmax = Rmin

and therefore K = Kmaxfmin = =5

~1\* 1
K = KmaxKmin = ( ) = .
r

On the upper half,

Hence, the Gaussian curvature of a sphere is 1/r2.

Example.(a) The surface

z2=—+=>=, 0<a<hb,
a b
satisfies
22 4
K(0) = Kmax(0)Kmin(0) = =7 = —-.
(0) = Fnax (0)imin (0) = =5 = —

Locally the surface is “similar” to a sphere.
(b) The surface
2 2
z:x——y—, 0<a<hb,
a b

satisfies
K(0) = Kmax(0)Emin(0) =

Locally the surface is a saddle surface.



10

Example.

and

Geodesic curvature. In plane
(1+(g)2)3*
On some other surface, geodesic is the “locally shortest path between two points”.

Example. The shortest path (around 300km) between Joensuu and Helsinki by plane is
along a circle, whose center is in the center of Earth. So this path is a geodesic on Earth.

A person traveling from Joensuu to Helsinki can also “choose poorly” to travel through
North pole, over Pacific ocean etc. and travel a long path (around 40000km-300km).

Example. Consider a circle of radius r in the plane, that is, C'(0,r) = M. Then

1
/ kyds = kg/ ds = kylength(OM) = — - 27 = 2,
oM oM r
and we see that this integral is independent of the radius of the circle.
Example. Let v C R? be a path
{g;:r,—3§ygO}U{(rms@,rsinG); 0<6< g}U{y=T7—3§$§0}-

Then on the straight parts of the path v, k, = 0. On the other hand, on the circular part,
ky = % The path v is smooth. We have

/ kyds = =
oM 2

By similar reasoning, as a limiting case, when r — 0, we obtain that if two lines Ly, Lo
meet in an angle «, then
/ kyds = a.
L1UL>

Euler characteristic. A cube has

e vertices: V = 8§;
e edges: F = 12;
e faces: F' = 6.

By definition,
XM)=V -—E+F=8-124+6=2.

A tetrahedron has
e vertices: V = 4;

e edges: F = 6;
e faces: F' = 4.
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Hence
XM)=V -—E+F=4—-6+4=2.

[43

It can be shown that all solids “with no holes” have Euler characteristic x(M) = 2.

Example. The doughnut
([0, 3] > [0, 3] > [0, 1) \ ([1, 2] x [1,2] x [0, 1])

Has V =848 =16 and F' = 6 +4 = 10. We require that the faces are simply connected
and hence make the cuts (0,0,0) — —(1,1,0) and (0,0,1) — —(1,1,1). After this, we have
E =12+ 12+ 2 = 26. Hence

X(M) =16 — 26 + 10 = 0.
We see that for solids
X(M) = 2(1 — #holes).

Since a surface can be triangulated, this allows a definition for x (M) for general surface
M.

If we have a simply connected plane region, then y (M) = 1, which is seen by considering
a triangle:
x(triangle) =V —E+F=3—-3+1=1.

If we have a surface with punctures, then two punctures form one hole. We have
X (M) = 2(1 — #holes) = 2 — #punctures.
Gauss-Bonnet theorem. We will now verify Gauss-Bonnet theorem in a few examples.

Example. Consider a sphere M of radius r. Then OM = (). We have

1 1
/ K+/ = — -area(M) + 0 = — - 4mr? = 4w = 2mx (M),
OM r r
since x(M) = 2. The Gauss-Bonnet theorem is seen to be valid.

Example. Consider a half sphere M of radius . Then OM is a circle, which is a geodesic
on the sphere. Hence £, = 0. We have

1 4mr?
/K+/ areaM)+0:—2~ o =21 = 2wy (M),
oM T2 r 2

since now x(M) = 1. The Gauss-Bonnet theorem is seen to be valid.

Example. Let M be a 1/8-part of a of radius 7. Then 0M consists of 3 geodesics which
meet in angles 7/2. Therefore

s 1 4mr? 37
/K—l—/dM areaM)+3§:ﬁ' 3 +2—27r—27rx(M)
since x(M) = 1. The Gauss-Bonnet theorem is seen to be valid.

Solution of the exercise.

Now our surface is M = X = C\{z1,...,2,}, the Riemann sphere with p punctures. Now
0X consists of discrete finite set of points and has measure zero. We have

/ KdAO/ ky ds = —4hyp-area(X) + 0 = 27y (X),
X oX
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which yields
2m s
hyp-area(X) = Zx(X) = 2(~x(X)).

Now, x(X) = 2 — #punctures = 2 — p and therefore
hyp-area(X) = z(p —2).

2
Since
—1
pSqu(QQ )+37
we have
C og (TN b1 < ap
—2=2dL —2d( — .
p 2 (2)+ =44
Hence

hyp-area(X) = %2(;0 —2) < 1-2d¢* = 2d¢*.

* % ok
Solution (a) The map a : D — H,
d1+z
a(z) = T,
is a bijection. Namely, 0 and oo are mirror images with respect to 0. Their images
a(0) = 7 and a(oco) = —i are mirror images with respect to R. Hence, a(0D) = R and
a(0) = 4, so we must have a(D) = H.
Therefore _ o
a2 oy i
We have
s 2
= g (z)] = —2E = :
Here
|z +i]* — |z —i|> = 4Re(iz) = 4Im(2).
Hence
() = 55
Z) =
Pe 2Tm(z)
(b) Let

L:{ZE(C; —g<1m(z)<g}.
Then b: H — L, b(z) = log(—iz) is conformal. Hence

g(2) =b1(2) =ie*, ¢'(z) =ie”
Now

el
prlz) = palg(lg ()] = g3 o
If 2 = x + iy, then

z T i

e” = e"e'y = e"(cos(y) + isin(y)),
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and therefore
lie*| = e, Im(ie*) = e” cos(y),

so that
1

pu(z) = 2cosTm(z)

We note that

1 _
PD(Z’):l_—W%OO, z—17,

and cos(m/2) = cos(—m/2) = 0. Hence, the hyperbolic density is unbounded as the point
approaches the boundary of the domain.

(c) Let
S={z€C;0<Im(z) <A}.
Thenc: L — S,
o(2) = (2 +i%y. 2
A

is conformal. Hence

We see that -
Im(g(2)) = Im (zX - 15)
and
cos(x — m/2) = cos(x) cos(—m/2) — sin(z) sin(—m/2) = sin x.
Therefore

™ ™

ps(2) = pr(g())lg () = 51— (ZIm(z) - %)  2Asin(z lm(z)/A)’

(d)Let S={z€C;0<Im(z) <A}. Thend: S — C,d(z) = e * is a so-called universal
covering map to
d(S)=A=A0,1,e") ={z€C; 1< |z| <e‘}.

We obtain
T

" 2Xsin (FIm(z))
Let fix z and let w = d(z) = e~**. One such w satisfies z = ilog(w). Now Im(z) = w and
|d'(2)| = | —ie | = | — iw| = |w|. We obtain

m

pa(d(z)) = ps(2)|d'(2)| = pr(2)

palw) = 2|w|Asin (5 log |w|)

Calculating hyperbolic densities for general domains is difficult. It has been found thatﬁ

B 2 dm(() -1
o) = e (L e

However, this expression has not been very useful for applications. Instead, estimates are
needed.

* >k ok

4S. Agard, Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I, No.
413, 1968, 12 pp.



14

Solution (a) Since

i ST _ 3
z—0
we have
I /A 1
im = :
Moo 28in(§ Im(z))  2Im(z2)
(b) Since -
wlog |z
pAa©1R)(2) = et
o 2 sin (ﬂ—g") 12| log |2|
log R
we have for A(0,1,00) = {1 < |z|} that
B |dz|
P01 = 31 log 2]

(c) By doing a change of variable z = 1/w, |dz| = |dw|/|w|?, we obtain
|dwl

P p—
2\w|log|—;|



