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In 1954, following previous works by Sewall Wright, the Japanese

geneticist Motoo Kimura (1924-1994) wrote

1f ¢(x,t)dx is the probability that the gene frequé;lcy lies between x and
x +dx in the t-th generation, it can be proved that ¢ (x,t) satisfies the partial
differential equation,
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Kimura, M. Process Leading to quasi-fixation of genes in natural populations
due to random fluctuation of selection intensities, Genetics 39:280-295 (1954).
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In 1962, this problem was reformulated into a backward equation:
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Genetics 47:713-719 (1962).
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“A mutant gene which appeared in a finite pop-
ulation will eventually either be lost from the
population or fixed (established) in it”

Kimura, M. and Ohta, T. Average number of genera-
tions until extinction of an individual mutant gene in a
finite population. Genetics, 63(3): 701-709 (1969).

3/23



“A mutant gene which appeared in a finite pop-
ulation will eventually either be lost from the
population or fixed (established) in it”

Kimura, M. and Ohta, T. Average number of genera-
tions until extinction of an individual mutant gene in a
finite population. Genetics, 63(3): 701-709 (1969).

Orp = w0% (x(1 = x)ip) — Ox (x(1 — x)0(x)p)
t — o0
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Consider a finite population of haploid individuals which reproduce
asexually evolving stochastically in time.
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Consider a finite population of haploid individuals which reproduce
asexually evolving stochastically in time.
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Update rule

5/23



The update rule attributes probabilities for all possible outcomes...
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The update rule attributes probabilities for all possible outcomes...
...from all initial conditions
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If there are no mutations in the population, then, after a
sufficiently long time, the population will be homogeneous. We say
that one type fixate, while the all the others were extinct.

oo | — - -~
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If there are no mutations in the population, then, after a
sufficiently long time, the population will be homogeneous. We say
that one type fixate, while the all the others were extinct.

B R
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A mutant gene which appeared in a finite population will
eventually either be lost from the population or fixed
(established) in it. Motoo Kimura.
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Consider a population of fixed size N composed by two types of
individuals: A and B and define p;, the probability that a type-A
individual is selected for reproduction in a population with / type-A
individuals and N — i type-B individuals.
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individuals: A and B and define p;, the probability that a type-A
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Let M;; be the transition probability between states j and /.

The Moran Process

e i=j+1,
Mij: JNPJ_'_ Nj(l_pj)7 I:J7

Jﬁ(l—pj , i=j—1,

0, li—jl>1.

Moran, P. A. P. The Statistical Process of Evolutionary
Theory. Clarendon Press, Oxford. (1962).
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Consider a population of fixed size N composed by two types of
individuals: A and B and define p;, the probability that a type-A
individual is selected for reproduction in a population with / type-A

individuals and N — i type-B individuals.

Let M;; be the transition probability between states j and /.

The Wright-Fisher Process

The Moran Process

WP i=j+1,
Mij: JNPJ_F Nj(l_pj)7 I:J7

Jﬁ(l_pj ) ’:J_lv

0, li—jl>1.

Moran, P. A. P. The Statistical Process of Evolutionary
Theory. Clarendon Press, Oxford. (1962).

ratio. Proc. Royal Soc. Edinburgh,
42:321-341. (1922).

Wright, S. Evolution in Mendelian pop-
ulations. Genetics, 16(2):0097-0159.
(1931).

Fisher, R. A. On the dominance
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where 6 : {0,..., N} — R is the fitness difference.

Direct evolution

Let (i, t) be the probability to
find the population at state / at
time t. Then,

O(i, t+ At) =D Md(j,t) .




In the neutral case: p; = JN In the weak selection case
J v N—Jj, .
b= |1+ @0 o) |

where 6 : {0,..., N} — R is the fitness difference.

Adjoint evolution
Let (i, t) be the probability to Let F(i,t) be the fixation
f|.nd the population at state / at probability at time t (or lat-
time t. Then, ter) if the initial condition is

Y(-,0) =0.;. Then,

F(,t+At)=> F(i,t)M; .

{ Op =Ly, Ouf = LIF

O(i, t+ At) =D Md(j,t) .
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Dominance Coexistence Coordination
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1 1-F - 1—Fy

lim M" =

K—00

0 F -+ Fy

where the F, satisfy Fn = > _ Oy (& — ™) Fpn, with Fo = 0
and Fy = 1.

In particular, any stationary state will be concentrated at the
endpoints.

If 1 denotes the vector (1,1,..., 1)1, F = (Fo, F1,..., Fy)! and if
(-,-,) denotes the usual inner product, then we have that

(W (1), 1) = (¥(0), 1) and (¥(t), F) = (¥(0), F).
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The last theorem states that “ A mutant gene which appeared in a
finite population will eventually either be lost from the population
or fixed (established) in it. " (M. Kimura).
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The last theorem states that “ A mutant gene which appeared in a
finite population will eventually either be lost from the population
or fixed (established) in it. " (M. Kimura).

However, “in the long run, we are all dead” (J. M. Keynes).
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We look for a differential equation that approximates the discrete
evolution of ¥ when N — oo and At — 0.
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...and imposing a time-step such that k(At)* = N~ = z we
conclude

+ o((At)Q“ : (At)’“”’) .
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We look for a differential equation that approximates the discrete
evolution of ¥ when N — oo and At — 0.

Using the weak selection principle

=4 |1+ @0 o) +o(an)

...and imposing a time-step such that k(At)* = N~ = z we
conclude

+ 0((At)2“ : (At)’“”’) .

In the strong formulation, with At — 0, and with the right
choice of 1 and v, we have the generalized Kimura equation:

Oep = 502 (x(1 = x)¢) = O (x(1 = x)0(x)¢) -
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The invariants become the following conservation laws:

d [t d /!
at J, ¢(x,t)dx =0, at J, 7(x)p(x, t)dx = 0,

where 7 satisfies

gﬂ_// + 9()()71'/ =0, 77-(0) =0, 71—(]_) =1.
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The invariants become the following conservation laws:

d [t d /!
at J, ¢(x,t)dx =0, at J, 7(x)p(x, t)dx = 0,

where 7 satisfies

gﬂ'// +0(x)r" =0, =(0)=0, =(1)=1.
This implies:
Ji exp [=2 J5" 00| ax
m(x) =

- fol exp [—% f(;(/ G(X”)dx”] ax'
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A weak solution is a function ¢ € L*([0, 00); BM4([0,1])) that satisfies
for test functions ¢ € C§°([0,o0) x [0,1])

oo 1
- / / o(t, x)0b(t, x)dxdt
o Jo

= /DO/ o(t, x)x(1 — x) [02¢ + 0(x)Oxt] dxdt +/ ©(0,x)¥(0, x)dx .
o Jo 0

Theorem

There exists a unique solution ¢ € L*°([0, 00); BM([0,1])) such that

d [ d
a J, o(x, t)dx = a/o m(x)p(x,t)dx =0 .

In fact p(x,t) € C=(Ry; BM([0,1])) N C*=(R4; C*°((0,1))) i.e.,
w(t, x) = Mo(t)do(x) + r(x, t) + M (t)d1(x) .

Furthermore, Mo and My are non-decreasing and lim;— r(x, t) = 0 uniformly.
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Therefore,
lim o(t,-) = Modo + M1d;

t—o00

with the fixation probability given by

1
M =1-Tp= / 7(x)(x,0)dx .
0

Note that if ¢(x,0) = d,,(x), then M1 = m(xo).

For any T, there is ¢ € L*°([0, T], BM4([0,1])) such that

V(n,ar) — ¢ weakly, when At — 0 .
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Theorem

Assume 6 and ¢(-,0) are smooth. Let r,, be the regular part of the
solution of the Kimura equation with k > 0. then, there is C > 0
such that for t < C/k

[, ) = @0, O)lloe < Cr

where @ is the solution of the Kimura equation with Kk =0, i.e.,
the solution of the replicator equation.
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Theorem

Assume 6 and ¢(-,0) are smooth. Let r,, be the regular part of the
solution of the Kimura equation with k > 0. then, there is C > 0
such that for t < C/k

[, ) = @0, O)lloe < Cr

where @ is the solution of the Kimura equation with Kk =0, i.e.,
the solution of the replicator equation.

The Replicator Equation

v

Taylor PD, Jonker L. Evolutionarily stable strategies and game dynamics.
Math Biosci. 40(1):145-156 (1978).

Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics.
Cambridge, UK: Cambridge Univ Press; 1998.
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Let 6(x) > 0 for all x. Then w(x) > x for all x. In particular, if A
is the Nash strategy, then the fixation probability of type A is
larger than the neutral probability.
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Let 6(x) > 0 for all x. Then w(x) > x for all x. In particular, if A
is the Nash strategy, then the fixation probability of type A is
larger than the neutral probability.

What happens if the population is small?
Public Goods Game

@ N players can contribute 1 euro or 0 euro to a common pool.
@ After all strategic decisions, the total contribution in the pool
is multiplied by r < N and divided in equal shares.
The rational strategy is to contribute 0 euros!
What if r > N?

Evolutionary dynamics will lead to a non-contributive state, but
the rational thing to do is to contribute 1 euro!
Evolution will take us to a non rational state! Spite?
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Remember:

M= (")pi(1—p)"~"and F=FM, Fo=0,Fy=1.
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R i
Neutral evolution: Pi A{..,N } <:){ f:’: 071\'1”,,\/
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Remember: | M; = (1)pi(1—p))"~"and F=FM, Fo=0,Fy=1.

_ = AL F— i
Neutral evolution: Pi=w = TN
N} i=0.....N

F is increasing

v

p is increasing.
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Remember: | M; = (1)pi(1—p))"~"and F=FM, Fo=0,Fy=1.

R i
Neutral evolution: Pi ,\{..,N } <:>{ /FI: O,A.I..,N

fixation probability

— " l|becoscosccsas regular
F is increasing non-regular/
I
I
1} 1
|
3 - 3 !
p is increasing. i
! . ey
R initial
1~ presence
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Remember: | M; = (1)pi(1—p))"~"and F=FM, Fo=0,Fy=1.

Neutral evolution: . N = . =
i=0,...,N i=0,...,N
fixation probability
o . 1fp------------ regular
F IS Increasing non_regular |
I
1} I
|
I
p is increasing. !
! initial
1 presence

Is this related to discontinuities in the fossil record?
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Stochastic Processes
Finite populations, discrete generations A\
Contiinuous time,
finitgd populations
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Stochastic Processes
Finite populations, discrete generations

| Continuous time, |

finite populations

Kimura Equation
Infinite populations; continuous time

h\ 2 h\ 2

Replicator Equation

Infinite populations; continuous, but
short, time
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@ Reformulate all finite population, continuous-in-time models
as Gradient Flows, i.e., a define a Wasserstein distance Wy
and a potential H:

0rq = —gradyy, H(a)
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@ Reformulate all finite population, continuous-in-time models
as Gradient Flows, i.e., a define a Wasserstein distance Wy
and a potential H:

0rq = —gradyy, H(a) -

Free energy: ) . miqilog q;

Shashahani metric: [ -~ ds

s(1—s)
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@ We constructed a degenerated parabolic partial differential
equation supplemented by conservation laws that works as an
approximation of the discrete Wright-Fisher and Moran
processes.
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@ We constructed a degenerated parabolic partial differential
equation supplemented by conservation laws that works as an
approximation of the discrete Wright-Fisher and Moran
processes.

@ This equation, the Kimura equation was studied without
reference to the original stochastic process.

@ The replicator equation was deduced as a particular limit of
the Kimura equation, and therefore the replicator equation is
an approximation for short times and strong selection of the
Wright-Fisher and the Moran processes.

@ All models are reformulated in gradient flow form (ongoing).

® The fitness potential (a natural structure that appears in the
variational formulation) is used to obtain information both on
the replicator dynamics and in the post-replicator dynamics
(path to fixation) (ongoing).
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