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Ribeiro , Léonard Monsaingeon

Finnish
Mathematical

Days 2018
01/05/2018

Partially funded by UID/MAT/00297/2013



2/23

History

In 1954, following previous works by Sewall Wright, the Japanese
geneticist Motoo Kimura (1924–1994) wrote

Kimura, M. Process Leading to quasi-fixation of genes in natural populations
due to random fluctuation of selection intensities, Genetics 39:280–295 (1954).

In 1962, this problem was reformulated into a backward equation:

Kimura, M. On the probability of fixation of mutant genes in a population,
Genetics 47:713-719 (1962).

Selection force Effective population
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History

“A mutant gene which appeared in a finite pop-
ulation will eventually either be lost from the
population or fixed (established) in it”

Kimura, M. and Ohta, T. Average number of genera-
tions until extinction of an individual mutant gene in a
finite population. Genetics, 63(3): 701–709 (1969).

∂tϕ = κ∂2
x (x(1− x)ϕ)− ∂x (x(1− x)θ(x)ϕ)

⇓t →∞

ϕ→ c0δ0 + c1δ1
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Outline

Stochastic Processes

Finite populations, discrete generations

Kimura Equation

Infinite populations; continuous time

Replicator Equation

Infinite populations; continuous, but
short, time

∆t → 0, N →∞, N∆t = o(1), weak selection

κ→ 0 or (short times and strong selection)
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Stochastic processes

Consider a finite population of haploid individuals which reproduce
asexually evolving stochastically in time.

t − 1

t t + 1

Update rule
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Stochastic Processes

The update rule attributes probabilities for all possible outcomes...

...from all initial conditions

M
0i

M1i

M2i

M
3iM

4iM
5i

M6i

M7i

M
8i

M
9i
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Stochastic Processes

If there are no mutations in the population, then, after a
sufficiently long time, the population will be homogeneous. We say
that one type fixate, while the all the others were extinct.

F

1− F

A mutant gene which appeared in a finite population will
eventually either be lost from the population or fixed
(established) in it. Motoo Kimura.
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Stochastic Processes
Moran & Wright-Fisher

Consider a population of fixed size N composed by two types of
individuals: A and B and define pi , the probability that a type-A
individual is selected for reproduction in a population with i type-A
individuals and N − i type-B individuals.

Let Mij be the transition probability between states j and i .

The Moran Process

Mij =


N−j
N

pj , i = j + 1 ,
j
N
pj + N−j

N
(1− pj) , i = j ,

j
N

(1− pj) , i = j − 1 ,
0 , |i − j | > 1 .

Moran, P. A. P. The Statistical Process of Evolutionary
Theory. Clarendon Press, Oxford. (1962).

The Wright-Fisher Process

Mij =

(
N

i

)
pi
j (1− pj)

N−i .

Fisher, R. A. On the dominance
ratio. Proc. Royal Soc. Edinburgh,
42:321–341. (1922).
Wright, S. Evolution in Mendelian pop-
ulations. Genetics, 16(2):0097–0159.
(1931).
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Stochastic Processes
Moran & Wright-Fisher

In the neutral case: pj = j
N .

In the weak selection case

pj =
j

N

[
1 + (∆t)ν

N − j

N
θ(j)

]
,

where θ : {0, . . . ,N} → R+ is the fitness difference.

Direct evolution

Let Φ(i , t) be the probability to
find the population at state i at
time t. Then,

Φ(i , t + ∆t) =
∑
i

MijΦ(j , t) .

{
∂tϕ = Lϕ ,
+???

Adjoint evolution

Let F (i , t) be the fixation
probability at time t (or lat-
ter) if the initial condition is
Ψ(·, 0) = δ·,i . Then,

F (j , t + ∆t) =
∑
i

F (i , t)Mij .

{
∂t f = L†f ,
f (0, ·) = 0 , f (1, ·) = 1 .
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Numerical Simulations
Wright-Fisher process

Dominance

pi = 1.3i
1.3i+N−i .

Coexistence

pi = (1.3−i/135)i
(1.3−i/135)+N−i .

Coordination

pi = (0.7+i/45)i
(0.7+i/45)i+N−i .

Population size: N = 50 Initial condition: Ψ(i , 0) = δ16,·.
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Wright-Fisher and Moran processes
Rigorous results

Theorem

lim
κ→∞

Mκ =


1 1− F1 · · · 1− FN
0 0 · · · 0

...
0 F1 · · · FN

 .

where the Fn satisfy Fn =
∑N

m=0 ΘN

(
n
N →

m
N

)
Fm, with F0 = 0

and FN = 1.
In particular, any stationary state will be concentrated at the
endpoints.
If 1 denotes the vector (1, 1, . . . , 1)†, F = (F0,F1, . . . ,FN)† and if
〈·, ·, 〉 denotes the usual inner product, then we have that
〈Ψ(t), 1〉 = 〈Ψ(0), 1〉 and 〈Ψ(t),F〉 = 〈Ψ(0),F〉.
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Wright-Fisher and Moran processes
Rigorous results

The last theorem states that “ A mutant gene which appeared in a
finite population will eventually either be lost from the population
or fixed (established) in it. ” (M. Kimura).

However, “in the long run, we are all dead” (J. M. Keynes).
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From WF & Moran to Kimura

We look for a differential equation that approximates the discrete
evolution of Ψ when N →∞ and ∆t → 0.

Using the weak selection principle

pj =
j

N

[
1 + (∆t)ν

N − j

N
θ(j)

]
+ o ((∆t)ν) ,

. . . and imposing a time-step such that κ(∆t)µ = N−1 = z we
conclude〈
Ψ,
T−∆t − 1

∆t
Φ

〉
=
〈
Ψ, κ (∆t)µ+ν−1 x(1− x)θ(x)∂xΦ + κ2 (∆t)2µ−1 x(1− x)∂2

xΦ
〉

+ o
(

(∆t)2µ , (∆t)µ+ν
)
.

In the strong formulation, with ∆t → 0, and with the right
choice of µ and ν, we have the generalized Kimura equation:

∂tϕ =
κ

2
∂2
x (x(1− x)ϕ)− ∂x (x(1− x)θ(x)ϕ) .
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From WF & Moran to Kimura

The invariants become the following conservation laws:

d

dt

∫ 1

0
ϕ(x , t)dx = 0,

d

dt

∫ 1

0
π(x)ϕ(x , t) dx = 0,

where π satisfies

κ

2
π′′ + θ(x)π′ = 0, π(0) = 0, π(1) = 1 .

This implies:

π(x) =

∫ x
0 exp

[
− 2
κ

∫ x ′

0 θ(x ′′)dx ′′
]
dx ′∫ 1

0 exp
[
− 2
κ

∫ x ′

0 θ(x ′′)dx ′′
]
dx ′

.
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The Kimura Equation

A weak solution is a function ϕ ∈ L∞([0,∞);BM+([0, 1])) that satisfies
for test functions φ ∈ C∞0 ([0,∞)× [0, 1])

−
∫ ∞

0

∫ 1

0

ϕ(t, x)∂tψ(t, x)dxdt

=

∫ ∞
0

∫ 1

0

ϕ(t, x)x(1− x)
[
∂2
xψ + θ(x)∂xψ

]
dxdt +

∫ 1

0

ϕ(0, x)ψ(0, x)dx .

Theorem
There exists a unique solution ϕ ∈ L∞([0,∞);BM+([0, 1])) such that

d

dt

∫ 1

0

ϕ(x , t)dx =
d

dt

∫ 1

0

π(x)ϕ(x , t)dx = 0 .

In fact ϕ(x , t) ∈ C∞(R+;BM+([0, 1])) ∩ C∞(R+;C∞((0, 1))) i.e.,

ϕ(t, x) = Π0(t)δ0(x) + r(x , t) + Π1(t)δ1(x) .

Furthermore, Π0 and Π1 are non-decreasing and limt→∞ r(x , t) = 0 uniformly.
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The Kimura Equation

Therefore,
lim
t→∞

ϕ(t, ·) = Π0δ0 + Π1δ1

with the fixation probability given by

Π1 = 1− Π0 =

∫ 1

0
π(x)ϕ(x , 0)dx .

Note that if ϕ(x , 0) = δx0(x), then Π1 = π(x0).

Theorem

For any T , there is ϕ ∈ L∞([0,T ],BM+([0, 1])) such that

Ψ(N,∆t) → ϕ weakly, when ∆t → 0 .
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From Kimura to the Replicator Equation

Theorem

Assume θ and ϕ(·, 0) are smooth. Let rκ be the regular part of the
solution of the Kimura equation with κ > 0. then, there is C > 0
such that for t < C/κ

‖rκ(·, t)− ϕ0(·, t)‖∞ ≤ Cκ ,

where ϕ0 is the solution of the Kimura equation with κ = 0, i.e.,
the solution of the replicator equation.

The Replicator Equation

x ′ = x(1− x)θ(x) .

Taylor PD, Jonker L. Evolutionarily stable strategies and game dynamics.
Math Biosci. 40(1):145–156 (1978).

Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics.

Cambridge, UK: Cambridge Univ Press; 1998.
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Strategy dominance and finite populations

Theorem

Let θ(x) > 0 for all x. Then π(x) > x for all x. In particular, if A
is the Nash strategy, then the fixation probability of type A is
larger than the neutral probability.

What happens if the population is small?

Public Goods Game

1 N players can contribute 1 euro or 0 euro to a common pool.

2 After all strategic decisions, the total contribution in the pool
is multiplied by r < N and divided in equal shares.

The rational strategy is to contribute 0 euros!

What if r > N?

Evolutionary dynamics will lead to a non-contributive state, but
the rational thing to do is to contribute 1 euro!
Evolution will take us to a non rational state! Spite?
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Finite populations and fixation probability

Remember: Mij =
(
N
i

)
pij (1− pj)

N−i and F = FM, F0 = 0,FN = 1.

Neutral evolution:
pi = i

N
i = 0, . . . ,N

} {
Fi = i

N
i = 0, . . . ,N

Theorem

F is increasing

m

p is increasing.

initial
presence

fixation probability

non-regular
regular1

1

Is this related to discontinuities in the fossil record?
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Variational Formulation
Ongoing work &. . . almost done!

Stochastic Processes

Finite populations, discrete generations

Kimura Equation

Infinite populations; continuous time

Replicator Equation

Infinite populations; continuous, but
short, time

∆t → 0, N →∞, N∆t = o(1), weak selection

κ→ 0 or (short times and strong selection)

Continuous time,

finite populations
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Variational Formulation
Ongoing work &. . . almost done!

1 Reformulate all finite population, continuous-in-time models
as Gradient Flows, i.e., a define a Wasserstein distance WN

and a potential H:

∂tq = −gradWN
H(q) .

X

Shashahani metric:
∫ y
x

ds√
s(1−s)

Free energy:
∑

i πiqi log qi

2 Reformulate the Kimura equation as a Gradient Flow.

X

3 Show that both distance and potential in the finite population
case converge to the Kimura equation counterpart.

X\

4 Show that when the effective population size converges to 0,
the components of the GF formalism in the Kimura equation
converge to the Replicator equation counterpart.

X\

5 Do everything again using the JKO formalism!

*
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Conclusions

1 We constructed a degenerated parabolic partial differential
equation supplemented by conservation laws that works as an
approximation of the discrete Wright-Fisher and Moran
processes.

2 This equation, the Kimura equation was studied without
reference to the original stochastic process.

3 The replicator equation was deduced as a particular limit of
the Kimura equation, and therefore the replicator equation is
an approximation for short times and strong selection of the
Wright-Fisher and the Moran processes.

4 All models are reformulated in gradient flow form (ongoing).

5 The fitness potential (a natural structure that appears in the
variational formulation) is used to obtain information both on
the replicator dynamics and in the post-replicator dynamics
(path to fixation) (ongoing).
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