luku5 | luku6 | luku7 |

5 Integrointi 291
5.0’ Johdanto 293 html pdf
5.0.1 Antiderivaatta 293 html pdf
5.0.2 Integroimiskaavat saadaan derivoimiskaavoista 293 html pdf
5.0.3. Differentiaaliyhtälö 293 html pdf
5.1 Summat ja sigma-merkintä 291
5.1.1 Summat ja sigma-merkintä 293 html pdf
5.1.2 Summat ja sigma-merkintä, jatkuu 293 html pdf
5.1.3 Summien ominaisuuksia 293 html pdf
5.1.4 Summakaavoja 293 html pdf
5.2 Pinta-alat summien raja-arvona 296
5.2.1 Pinta-ala-ongelma 296 html pdf
5.2.2 Pinta-ala-ongelman ratkaisu 296 html pdf
5.2.3 Tasavälinen jako 296 html pdf
5.2.4 Summan raja-arvon laskeminen 296 html pdf
5.3 Määrätty integraali 302
5.3.1 Määrätty integraali 302 html pdf
5.3.2 Jaot ja Riemannin summat 302 html pdf
5.3.3 Määrätty integraali 303 html pdf
5.3.4 Yleiset Riemannin summat 305 html pdf
5.3.5 Yleiset Riemannin summat, esimerkkejä 305 html pdf
5.4 Määrätyn integraalin ominaisuuksia 307
5.4.1 Integrointirajat ja lineaarisuus 310 html pdf
5.4.2 Arvioita sekä parillinen ja pariton funktio 310 html pdf
5.4.3 Integraalilaskennan väliarvolause 310 html pdf
5.4.4 Integraalilaskennan väliarvolause, todistus 310 html pdf
5.4.5 Paloittain jatkuvat funktiot 311 html pdf
5.5 Analyysin peruslause 313
5.5.1 Analyysin peruslause 313 html pdf
5.5.2 Analyysin peruslause, todistus 313 html pdf
5.5.3 Merkintöjä 313 html pdf
5.5.4 Analyysin peruslause, esimerkkejä 313 html pdf
5.5.5 Analyysin peruslause, esimerkkejä2 313 html pdf
5.5.6 Analyysin peruslause, esimerkkejä3 313 html pdf
5.5.7 Leibnitzin integraalisääntö 313 html pdf
5.6 The Method of Substitution 319
Trigonometric Integrals 323
5.7 Areas of Plane Regions 327
Areas Between Two Curves 328
Chapter Review 331

6 Techniques of Integration 334
6.1 Integration by Parts 334
Reduction Formulas 338
6.2 Integrals of Rational Functions 340
Linear and Quadratic Denominators 341
Partial Fractions 343
Completing the Square 345
Denominators with Repeated Factors 346
6.3 Inverse Substitutions 349
The Inverse Trigonometric Substitutions 349
Inverse Hyperbolic Substitutions 352
Other Inverse Substitutions 353
The tan(x/2) Substitution 354
6.4 Other Methods for Evaluating Integrals 356
The Method of Undetermined Coefficients 357
Using Maple for Integration 359
Using Integral Tables 360
Special Functions Arising from Integrals 361
6.5 Improper Integrals 363
Improper Integrals of Type I 363
Improper Integrals of Type II 365
Estimating Convergence and Divergence 368
6.6 The Trapezoid and Midpoint Rules 371
The Trapezoid Rule 372
The Midpoint Rule 374
Error Estimates 375
6.7 Simpson's Rule 378
6.8 Other Aspects of Approximate Integration 382
Approximating Improper Integrals 383
Using Taylor's Formula 383
Romberg Integration 384
The Importance of Higher-Order Methods 387
Other Methods 388
Chapter Review 389

7 Applications of Integration 393
7.1 Volumes by Slicing, Solids of Revolution 393
Volumes by Slicing 394
Solids of Revolution 395
Cylindrical Shells 398
7.2 More Volumes by Slicing 402
7.3 Arc Length and Surface Area 406
Arc Length 406
The Arc Length of the Graph of a Function 407
Areas of Surfaces of Revolution 410
7.4 Mass, Moments, and Centre of Mass 413
Mass and Density 413
Moments and Centres of Mass 416
Two- and Three-Dimensional Examples 417
7.5 Centroids 420
Pappus's Theorem 423
7.6 Other Physical Applications 425
Hydrostatic Pressure 426
Work 427
Potential Energy and Kinetic Energy 430
7.7 Applications in Business, Finance, and Ecology 432
The Present Value of a Stream of Payments 433
The Economics of Exploiting Renewable Resources 433
7.8 Probability 436
Discrete Random Variables 437
Expectation, Mean, Variance, and Standard Deviation 438
Continuous Random Variables 440
The Normal Distribution 444
Heavy Tails 447
7.9 First-Order Differential Equations 450
Separable Equations 450
First-Order Linear Equations 454
Chapter Review 458