5 | Integrointi | 291 |
|
5.0’ | Johdanto | 293 | | html | pdf
|
5.0.1 | Antiderivaatta | 293 | | html | pdf
|
5.0.2 | Integroimiskaavat saadaan derivoimiskaavoista | 293 | | html | pdf
|
5.0.3. | Differentiaaliyhtälö | 293 | | html | pdf
|
5.1 | Summat ja sigma-merkintä | 291 |
|
5.1.1 | Summat ja sigma-merkintä | 293 | | html | pdf
|
5.1.2 | Summat ja sigma-merkintä, jatkuu | 293 | | html | pdf
|
5.1.3 | Summien ominaisuuksia | 293 | | html | pdf
|
5.1.4 | Summakaavoja | 293 | | html | pdf
|
| | |
|
5.2 | Pinta-alat summien raja-arvona | 296 |
|
5.2.1 | Pinta-ala-ongelma | 296 | | html | pdf
|
5.2.2 | Pinta-ala-ongelman ratkaisu | 296 | | html | pdf
|
5.2.3 | Tasavälinen jako | 296 | | html | pdf
|
5.2.4 | Summan raja-arvon laskeminen | 296 | | html | pdf
|
| | |
|
5.3 | Määrätty integraali | 302 |
|
5.3.1 | Määrätty integraali | 302 | | html | pdf
|
5.3.2 | Jaot ja Riemannin summat | 302 | | html | pdf
|
5.3.3 | Määrätty integraali | 303 | | html | pdf
|
5.3.4 | Yleiset Riemannin summat | 305 | | html | pdf
|
5.3.5 | Yleiset Riemannin summat, esimerkkejä | 305 | | html | pdf
|
| | |
|
5.4 | Määrätyn integraalin ominaisuuksia | 307 |
|
5.4.1 | Integrointirajat ja lineaarisuus | 310 | | html | pdf
|
5.4.2 | Arvioita sekä parillinen ja pariton funktio | 310 | | html | pdf
|
5.4.3 | Integraalilaskennan väliarvolause | 310 | | html | pdf
|
5.4.4 | Integraalilaskennan väliarvolause, todistus | 310 | | html | pdf
|
5.4.5 | Paloittain jatkuvat funktiot | 311 | | html | pdf
|
| | |
|
5.5 | Analyysin peruslause | 313 |
|
5.5.1 | Analyysin peruslause | 313 | | html | pdf
|
5.5.2 | Analyysin peruslause, todistus | 313 | | html | pdf
|
5.5.3 | Merkintöjä | 313 | | html | pdf
|
5.5.4 | Analyysin peruslause, esimerkkejä | 313 | | html | pdf
|
5.5.5 | Analyysin peruslause, esimerkkejä2 | 313 | | html | pdf
|
5.5.6 | Analyysin peruslause, esimerkkejä3 | 313 | | html | pdf
|
5.5.7 | Leibnitzin integraalisääntö | 313 | | html | pdf
|
| | |
|
5.6 | The Method of Substitution | 319 |
|
| Trigonometric Integrals | 323 |
|
| | |
|
5.7 | Areas of Plane Regions | 327 |
|
| Areas Between Two Curves | 328 |
|
| Chapter Review | 331 |
|
| | |
|
6 | Techniques of Integration | 334 |
|
6.1 | Integration by Parts | 334 |
|
| Reduction Formulas | 338 |
|
| | |
|
6.2 | Integrals of Rational Functions | 340 |
|
| Linear and Quadratic Denominators | 341 |
|
| Partial Fractions | 343 |
|
| Completing the Square | 345 |
|
| Denominators with Repeated Factors | 346 |
|
| | |
|
6.3 | Inverse Substitutions | 349 |
|
| The Inverse Trigonometric Substitutions | 349 |
|
| Inverse Hyperbolic Substitutions | 352 |
|
| Other Inverse Substitutions | 353 |
|
| The tan(x/2) Substitution | 354 |
|
| | |
|
6.4 | Other Methods for Evaluating Integrals | 356 |
|
| The Method of Undetermined Coefficients | 357 |
|
| Using Maple for Integration | 359 |
|
| Using Integral Tables | 360 |
|
| Special Functions Arising from Integrals | 361 |
|
| | |
|
6.5 | Improper Integrals | 363 |
|
| Improper Integrals of Type I | 363 |
|
| Improper Integrals of Type II | 365 |
|
| Estimating Convergence and Divergence | 368 |
|
| | |
|
6.6 | The Trapezoid and Midpoint Rules | 371 |
|
| The Trapezoid Rule | 372 |
|
| The Midpoint Rule | 374 |
|
| Error Estimates | 375 |
|
| | |
|
6.7 | Simpson's Rule | 378 |
|
| | |
|
6.8 | Other Aspects of Approximate Integration | 382 |
|
| Approximating Improper Integrals | 383 |
|
| Using Taylor's Formula | 383 |
|
| Romberg Integration | 384 |
|
| The Importance of Higher-Order Methods | 387 |
|
| Other Methods | 388 |
|
| Chapter Review | 389 |
|
7 | Applications of Integration | 393 |
|
7.1 | Volumes by Slicing, Solids of Revolution | 393 |
|
| Volumes by Slicing | 394 |
|
| Solids of Revolution | 395 |
|
| Cylindrical Shells | 398 |
|
| | |
|
7.2 | More Volumes by Slicing | 402 |
|
| | |
|
7.3 | Arc Length and Surface Area | 406 |
|
| Arc Length | 406 |
|
| The Arc Length of the Graph of a Function | 407 |
|
| Areas of Surfaces of Revolution | 410 |
|
| | |
|
7.4 | Mass, Moments, and Centre of Mass | 413 |
|
| Mass and Density | 413 |
|
| Moments and Centres of Mass | 416 |
|
| Two- and Three-Dimensional Examples | 417 |
|
| | |
|
7.5 | Centroids | 420 |
|
| Pappus's Theorem | 423 |
|
| | |
|
7.6 | Other Physical Applications | 425 |
|
| Hydrostatic Pressure | 426 |
|
| Work | 427 |
|
| Potential Energy and Kinetic Energy | 430 |
|
| | |
|
7.7 | Applications in Business, Finance, and Ecology | 432 |
|
| The Present Value of a Stream of Payments | 433 |
|
| The Economics of Exploiting Renewable Resources | 433 |
|
| | |
|
7.8 | Probability | 436 |
|
| Discrete Random Variables | 437 |
|
| Expectation, Mean, Variance, and Standard Deviation | 438 |
|
| Continuous Random Variables | 440 |
|
| The Normal Distribution | 444 |
|
| Heavy Tails | 447 |
|
| | |
|
7.9 | First-Order Differential Equations | 450 |
|
| Separable Equations | 450 |
|
| First-Order Linear Equations | 454 |
|
| Chapter Review | 458 |
|